基于大数据技术的气象业务监视数据采集处理

来源 :计算机仿真 | 被引量 : 0次 | 上传用户:zhuxuan88
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
气象数据生产过程中秒级数据流量达到6万次/秒,为了对海量气象数据进行实时监控,快速定位数据观测、传输、处理、服务全流程中各环节故障,研发了对监视数据的采集和处理框架。基于REST接口和Flume框架实时采集原始监视信息,采用Kafka实现监视数据流的缓冲和持久化存储,在Spark Streaming流式计算平台上实现对监视数据的预处理、指标计算,并对告警事件进行归并、压缩等处理,最终生成面向运维人员的告警。同时、上述系统采用故障仿真压测技术,对系统可能出现的故障进行了模拟压力测试。实验结果表明,上述
其他文献
针对引力搜索算法在优化复杂的波束赋形问题时,准确率低的问题,提出了一种改进算法:伪反向学习引力搜索算法。首先设计了一种随迭代次数变化的反向概率,将其用于算法中来优化反向学习的作用时机,进一步提高了算法搜索最优解的速度;其次,定义了"精英粒子",并将其保留至下一代种群中,替换掉种群中适应度值较差的粒子,从而改善了算法易陷入局部最优解的问题。利用改进算法对不同阵列天线进行优化,结果显示,和多种同类高性