论文部分内容阅读
Iterative Dichotomiser version3(ID3)算法是数据挖掘中经典的决策树分类算法,其核心是分裂训练集属性的选择标准,即分裂前后的信息增益量最大,用该标准选择属性时对于取值较多的属性具有较强依赖性。剖析了ID3算法存在的不足并加以改进,引入了属性关注度,提出了改进算法AAID3算法。实验表明改进算法对原ID3算法的取值偏向问题有所克服并使分类更加准确,决策树更加简明。