论文部分内容阅读
构造了不依赖于结点组的更广的一类二元Fourier插值算子和二元离散的Fourier插值算子,估计了两类算子的收敛阶,并且证明了对于二元连续周期函数类来讲,该收敛阶是最优的.更进一步讨论了这两类算子的饱和问题,得到了饱和阶的估计.在收敛阶和饱和阶的度量上,论文结果与以往文献中的结果是一致的.