论文部分内容阅读
针对现有利用快速鲁棒特征(SURF)进行图像分类的方法中存在的效率低、正确率低的问题,提出一种利用图像SURF集合的统计特征进行图像分类的方法。该方法将SURF的各个维度及尺度信息视为各自独立的随机变量,并利用拉普拉斯响应区分不同数据。首先,获取图像的SURF向量集合;然后,分维度计算SURF向量集合的一阶中心绝对矩、带权一阶中心绝对矩等统计特征,并构建特征向量;最后,结合支持向量机(SVM)进行图像分类。在Corel 1K图像库上的实验结果表明,该方法查准率较SURF直方图方法和三通道Gabor纹