论文部分内容阅读
解决定值问题的主要方法有三种,即推证法、解析法和参数法.下面分类举例来研究和探讨解析几何中定值问题的规律.
1.定点坐标问题
定点坐标问题的解题步骤可归纳为:第一步,选择参变量.需要选择过定点的的动直线随某个变量的变化而变化,可选择这个量为参变量.第二步,求出动直线的方程.求出只含上述参变量的动直线方程,并由其它辅助条件减少参变量的个数,最终使动直线方程的系数中只含有一个参变量.第三步,求出定点坐标.可以设动直线方程中所含的参变量为λ,把直线方程可以写成形如 的形式,然后解关于x、y的方程组 ,得到定点坐标.
2.定长度问题
解析法解决解析几何中的长度问题的一般步骤是:第一,恰当地选择坐标系,使题中某些点的坐标、直线和圆的方程呈较简单的形式;第二,根据题目要求,求出有关点的坐标、直线或圆的方程;第三,从已知条件出发,以求解或求证的结论为目标,通过运算、推理出要求解或求证的结果.
例2:已知半径为6的⊙O的圆心O到直线l的距离为12,过O作OH⊥l,垂足为H,过l上任一点M向⊙O作切线MP和MQ,切点分别为P和Q,直线PQ交OH于N,求证ON的长度为定值.
3.定面积问题
定面积问题的解题关键是选定一个适合题设的参变量,用题中已知量和参变量表示题中所涉及的定义、方程、几何性质,再用韦达定理、点差法导出所求定值关系式需要的表达式,并将其代入定值关系式,化简整理得出结果.
例3:经过双曲线上任一点,作两条分别平行于两条渐近线的直线。求证这两条直线和两条渐近线所围成的平行四边形的面积为定值.
(作者单位:郑州市电子信息工程学校)
1.定点坐标问题
定点坐标问题的解题步骤可归纳为:第一步,选择参变量.需要选择过定点的的动直线随某个变量的变化而变化,可选择这个量为参变量.第二步,求出动直线的方程.求出只含上述参变量的动直线方程,并由其它辅助条件减少参变量的个数,最终使动直线方程的系数中只含有一个参变量.第三步,求出定点坐标.可以设动直线方程中所含的参变量为λ,把直线方程可以写成形如 的形式,然后解关于x、y的方程组 ,得到定点坐标.
2.定长度问题
解析法解决解析几何中的长度问题的一般步骤是:第一,恰当地选择坐标系,使题中某些点的坐标、直线和圆的方程呈较简单的形式;第二,根据题目要求,求出有关点的坐标、直线或圆的方程;第三,从已知条件出发,以求解或求证的结论为目标,通过运算、推理出要求解或求证的结果.
例2:已知半径为6的⊙O的圆心O到直线l的距离为12,过O作OH⊥l,垂足为H,过l上任一点M向⊙O作切线MP和MQ,切点分别为P和Q,直线PQ交OH于N,求证ON的长度为定值.
3.定面积问题
定面积问题的解题关键是选定一个适合题设的参变量,用题中已知量和参变量表示题中所涉及的定义、方程、几何性质,再用韦达定理、点差法导出所求定值关系式需要的表达式,并将其代入定值关系式,化简整理得出结果.
例3:经过双曲线上任一点,作两条分别平行于两条渐近线的直线。求证这两条直线和两条渐近线所围成的平行四边形的面积为定值.
(作者单位:郑州市电子信息工程学校)