基于注意力和特征融合的遥感图像目标检测模型

来源 :激光与光电子学进展 | 被引量 : 0次 | 上传用户:aulifo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对环境背景复杂且包含小目标的遥感图像难以进行精准目标检测的问题,在单阶段检测(SSD)模型的基础上,提出了一种基于注意力和特征融合的单阶段目标检测模型,该模型主要由检测分支和注意力分支组成。首先,在检测分支SSD中加入注意力分支,注意力分支的全卷积网络通过逐像素回归得到待检测目标的位置特征;其次,采用对应元素相加的方法对检测分支和注意力分支进行特征融合,获得细节信息和语义信息更丰富的高质量特征图;最后,用软非极大值抑制(Soft-NMS)进行后处理,进一步提高目标检测的准确性。实验结果表明,本模型
其他文献
文章对欧洲数据门户发布的《2019开放数据成熟度报告》进行解读,从中提取有价值信息,以期为我国开放数据发展建设提供借鉴.文章对《2019开放数据成熟度报告》中的开放数据成
叶绿素a浓度是估算浮游植物生物量的重要指标,连续小波变换是一种重要的多尺度光谱分析方法。本文以粤西、珠江口为案例区,基于地面高光谱和实测叶绿素a的浓度数据,选取10种不同的母小波基函数对高光谱反射率数据进行连续小波变换。运用偏最小二乘回归(PLSR)方法构建叶绿素a浓度的反演模型,分析比较了不同小波变换系数对建模结果的影响。研究结果表明:采用经过多种小波变换后的小波系数与实测叶绿素a浓度进行相关性