基于改进型C3D网络的人体行为识别算法

来源 :应用科技 | 被引量 : 0次 | 上传用户:dreambox007
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对原始C3D卷积神经网络参数量庞大,以及在压缩网络参数的同时进一步提高视频数据集中人体行为的识别率的问题,提出一种改进型C3D卷积神经网络模型。首先,采用全局平均池化和卷积分类操作取代全连接层,形成全卷积网络形式,之后在模型中分别引入卷积核为(3×3×3)和(1×1×1)的三维卷积层,并在此基础上采用卷积核为(3×1×7)和(3×7×1)的三维卷积层对多个(3×3×3)卷积层合并。最后,将所提方法在数据集UCF101和HMDB51上进行训练测试,并与当前深度学习现有流行算法进行比较。实验结果表明,
其他文献
针对常用的图像特征匹配算法对具有视差的图像在图像特征匹配阶段会产生大量误匹配点的问题,提出了一种AKAZE(accelerated-KAZE)算法结合自适应局部仿射匹配的特征匹配算法。首先,采用AKAZE算法提取特征点;接着,采用二进制描述符M-LDB(modified-local difference binary)进行描述并进行暴力匹配产生粗匹配点对;最后,基于图像的仿射变换可以提供较强的几何