论文部分内容阅读
微缩电子技术的高速发展带动新型电子器件朝着小型化、集成化和智能化的方向转变。然而,当前主流电子器件的宏观形式单一且多由传统刚性电子材料制备而成;不仅与人体工程学原理相悖,还会降低其电子功能稳定性。新兴电子织物材料通过整合纺织品基材的固有性质(例如轻质、柔软、透气、舒适和耐久等)和微纳米电子材料的特有功能(例如导电、介电和传感等)来兼顾可穿戴器件的服用性能和电子功能。但是,当前电子织物材料的功能性和耐久性还不能进行有效地统一,主要原因有:1)由于微纳米电子材料与织物基材的尺寸和材质不同,通过现有的制备工艺不能有效地整合二者的优势;2)基于电子功能层与织物基材之间复合而成的柔性电子器件存在层间杨氏模量不匹配的问题,在长期的使用中易出现断裂甚至界面分离的现象;3)采用结构一体化制备而成的敏感纤维材料由于其物理形态或化学结构易受环境因素的影响,使电子织物的功能稳定性下降。鉴于此,本论文基于刚性电子材料柔性化策略,借助丝网印刷、静电纺丝以及微结构形貌构筑和表面化学结构设计来保留和提高电子织物材料的服用性能与导电、压力传感和电化学传感功能,以实现不同尺寸/材质的结构、器件和系统的跨尺度制造并为未来可穿戴产业的发展奠定研究基础。主要内容有:基于银纳米颗粒(Ag NPs)的去稳定机制和丝网印刷工艺,制备了可在低温下烧结的Ag NPs基导电墨水和具有较低电阻率的柔性印刷电路。采用球形Ag NPs(直径为10nm)作为导电填料;利用醇共溶剂作为分散剂;此外,分别将聚苯胺(PANI)和稀盐酸(HCl)充当助剂和化学烧结剂;再经均质后得到低温烧结型导电墨水。研究表明,Cl-与Ag NPs表面存在强烈的相互作用;在印刷电路的干燥过程中,Cl-浓度增大并取代Ag NPs表面上原有的稳定基团,使Ag NPs的表面区域暴露出来进而产生自发聚集;再经历奥斯瓦尔德熟化过程并不断生长为块状烧结体形态,使印刷电路经过低温处理后表现出优异的导电功能。另外,随着导电墨水中PANI的引入,导电墨水的固含量和粘度也随之增大,印刷电路的清晰度和导电性提升。当导电墨水中Ag NPs的固含量为30 wt.%,PANI含量为27.8wt.%且HCl的初始浓度为50 m M时,印刷织物电路可以在60℃下实现烧结并具有较好的导电性能(电阻率为2×10-5Ω·m)。利用柔性印刷电路代替传统刚性电路模式并导通并联的发光二极管。低温烧结导电墨水的开发可以有效地避免传统的高温烧结过程,为拓宽热敏感基材在印刷电子中的应用提供了一种有效的策略。通过引入高分子弹性体充当导电墨水的粘结相,提高了印刷导电织物在反复弯曲或压缩下的导电功能稳定性;此外,基于高分子溶胀和Ag NPs自发烧结同步进行的思路,成功地开发了共溶剂(化学烧结剂和溶胀剂)后处理过程并制备出具有微尺度导电褶皱结构的印刷电子织物。研究显示,由于溶胀后的WPU分子(软材料)与Ag NPs烧结体(硬材料)之间的弹性模量相差较大,在软/硬材料的界面处会产生压缩应力,再经溶剂干燥过程的内应力释放过程迫使WPU在复合体系中形成微尺度的褶皱结构。特别地,当Ag NPs的固含量为50 wt.%,将干燥后的印刷图案置于共溶剂中(由聚阳离子季铵盐(DADMAC)、乙醇和二氯甲烷(DCM)按照体积比分别为10:5:10配制而成)并在室温下后处理,可以得到电阻率为0.01Ω·m的印刷图案。基于导电涤纶织物内部的微观褶皱结构,将两片导电织物组装并获得对微小压力(29 Pa)具有较好响应效果的压力传感织物。该压力传感织物经过160多次的循环弯曲和压缩后均具有良好的导电稳定性、较快的响应时间(63 ms)和信号一致性;实现了对人体运动信号的频率和强度进行同步监测且在机械外力下能保持较好的功能稳定性,为实现可穿戴电子织物提供了研究基础。基于电容式压力传感机制并达到免疫环境因素对介电材料的影响,构筑了化学结构和物理形态稳定、吸潮性低和输出信号抗干扰的可穿戴全织物压力传感器。通过对聚离子液体(PIL)的结构进行筛选和设计,制备了具有极性较强且化学结构稳定的聚(1-乙烯基-3-丁基咪唑双三氟甲烷磺酰亚胺)([PBVIm][TFSI],重复单元的偶极矩为12.49 Debye)并将其作为主体成分;再通过静电纺丝制备了直径为213 nm且[PBVIm][TFSI]含量高达67 wt.%的聚离子液体纳米纤维膜(PILNM)。将PILNM作为介电层并与导电涤纶织物依据“三明治结构”组装,得到了初始电容值为45 p F(0.5 MHz)的全织物柔性平行板电容器。进一步将PILNM基柔性电容器进行全织物形式封装,开发了对人体生理信号(包括脉搏振动、喉部颤动、胸腔收缩、手指动作和肘部弯曲等)具有同步响应的全织物压力传感器。基于PILNM具有三维多孔结构和高度极化率的优势,全织物压力传感器对微小压力具有较高的灵敏度(0.2 k Pa范围内的灵敏度可达0.49 k Pa-1)和较快的响应时间(30 ms)。此外,由于介电PILNM的化学结构稳定性且具有疏水性,该压力传感织物在不同的湿度环境(70%RH)下和多次的水洗(大于10次)后均能保持较好的传感稳定性和一致性。PIL介电材料的制备和设计为新型聚合物介电材料和免疫环境干扰型压力传感器的构建提供了新的思路。除了提高压力传感性能外,PILNM中含有大量的离子液体单元和PAN分子链也能被设计成柔性电化学传感纳米纤维膜,并修饰在传统电极表面来改善单组分纳米纤维膜修饰电极的电化学性能。将[PBVIm][TFSI]含量为50 wt.%的混纺纳米纤维膜(50%PILNM)进行表面化学结构设计;再经过乙二胺(EDA)功能化后,使氨基接枝到PILNM的表面。利用氨基化PILNM具有多孔结构、较大的比表面积、双极性离子液体分子链骨架和较高的反应活性,可以将其用于甲醛(HCHO)分子的高效捕捉中;与此同时,将其修饰在电极表面时还能促进离子在PILNM修饰电极的微孔道内富集,从而改善单组分纳米纤维膜修饰电极的离子储存和离子导电性,因此增强它的电化学信号强度。结果表明,氨基功能化的PILNM与HCHO溶液(浓度为3.6×10-4 mg/L)充分反应后,它的表面水接触角由原始的32°变为46°;Zeta电位由原始的96 m V减小至81 m V;修饰电极在电解质溶液中的电流信号也明显增强。当HCHO溶液的浓度介于3.6×10-8~3.6×102 mg/L时,PILNM修饰电极的峰值电流变化率与HCHO的浓度之间存在线性相关性(R2=0.93)。此外,该PILNM修饰电极对家庭饮用水中的微量HCHO也表现出较好的检测效果。通过对PILNM进行定向且高效地表面化学结构设计,可以构筑出用于微量化学分子传感的修饰电极,为新型高灵敏化学传感器的设计提供了新的途径。