论文部分内容阅读
超磁致伸缩材料(GMM)具有伸缩应变大、输出力大、能量密度高、响应速度快和频带宽等优点,是一种新型智能材料。它在超声换能器、精密定位、超精密加工、微型马达和振动主动控制等领域有着广泛的应用。航空航天飞行器的发展,迫切需要体积小、重量轻、压力高,且易于控制输出流量的分布式液压系统。现有的液压泵难以满足以上要求,利用智能材料的诸多优势,研究基于智能材料的新型液压泵及其系统,既有开展理论研究的必要性,也有现实的迫切性。论文针对超磁致伸缩材料的特性,在结构优化设计、流场分析、系统建模与仿真和实验测试等方面开展理论和实验研究,旨在为超磁致伸缩泵及其液压系统的发展提供设计理论支持和实验数据积累。论文分析了现有的液压泵和基于智能材料的新型泵的工作原理。论述了磁致伸缩效应产生的机理、超磁致伸缩材料的基本特性及其应用。对超磁致伸缩泵的国内外研究现状进行了深入剖析,指出了开展超磁致伸缩泵设计理论和实验研究的重要意义。提出了超磁致伸缩泵的总体设计方案。通过研究和分析磁场强度在GMM棒轴线上的分布,确定了驱动线圈设计和优化的一般方法。通过建立系统的等效磁路,找到了提高电-磁-机械转换效率的方法。使用有限元方法对超磁致伸缩泵的磁场进行仿真和分析,并对磁回路结构进行了优化,改善了磁场的均匀性。分析了预压力机构、泵腔设计以及单向阀设计的主要参数对输出性能的影响。针对超磁致伸缩泵的结构特点,设计了静密封和动密封相结合的密封方式。基于流体力学连续性方程和动量方程,建立了超磁致伸缩泵泵腔流场的二维和三维模型,仿真结果显示泵腔压力差随频率增加而增大。使用有限元方法研究了不同泵腔高度下,腔内压力损失同活塞初始激励速度之间的关系,分析了泵腔内的压力分布状况以及造成压力损失的原因。通过对不同进出管路位置分布、进出管路直径以及进出管路倒角形状对泵腔内压力损失影响的研究,得到了优化设计的基本方案和思路,并对流场结构参数进行了最终的优化。采用流-固耦合的方法对不同单向阀阀片厚度下,流场内流动速度进行仿真分析,得到了单向阀阀片厚度选取以及单向阀几何结构优化的方法。对超磁致伸缩泵泵腔内层流和紊流状态以及泵的自吸能力进行了讨论。超磁致伸缩泵实验系统涉及到较为复杂的多物理场耦合。为了深入解析电场、磁场、机械场和流场之间的耦合过程,研究了超磁致伸缩泵的输入特性与输出流量特性和工作油缸驱动负载特性的关系。通过对超磁致伸缩棒、活塞、泵腔、管道和工作油缸的分段分析和建模,构建了超磁致伸缩泵实验系统的总体静态模型和动态模型。其中,使用状态空间建立了系统的动态模型,并将仿真结果同实验数据进行了对比分析。基于超磁致伸缩泵的设计理论,制作了实验样机,搭建了实验测试系统。对超磁致伸缩泵的输出特性进行了测试,得到了输出流量和输出压力随电流大小和频率变化的关系曲线。研究了无负载和不同负载情况下,工作油缸的输出速度同电流输入特性之间的关系。着重讨论了预压力对超磁致伸缩泵的输出性能和系统输出性能的影响。最后分析了系统中气泡产生的原因和解决方法。