两类随机微分方程解的稳定性分析

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:sunchine0415
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
对于随机微分方程(SDES)的研究已经有六十余年的历史了,自从二十世纪五十年代日本数学家开创了随机微积分的理论知识以后,到现在随机微分方程已经有了飞速的发展,并且它被广泛的被应用于生物、物理、经济、控制等领域。很久以来,因为缺少有效的求解随机微分方程的数值方法和可以利用的计算机资源,使得在建立数学模型时往往都忽略了随机因素的影响。近年来,一些学者在随机微分方程数值解方面已经取得一定的成果,这也将意味着某些随机问题可以借助数学软件进行研究。  本文从概率论基础和随机过程的一些常用到的定义和定理出发,然后介绍了随机微分方程的背景知识以及其解析解的一些性质,给出了解的存在唯一性定理及其表达式。由于随机系统非常的复杂,我们在求解的过程中要考虑其随机项对解的影响,通常情况下很难得到方程理论解的解析表达式,所以数值方法的构造就变得极其重要。本论文主要研究了两类随机微分方程(一类普通的微分方程,一类是延迟微分方程)解的P-阶矩和均方稳定性的条件,并给出了相应的数值模拟。将Euler-Maruyama方法应用于随机延迟微分方程,证明了此数值方法是均方稳定的,同时给出了方法满足均方稳定的条件。通过数值算例,证明了Euler-Maruyama方法求出的解同真实解的误差很小,证明了该方法的优越性。文章的最后,我们给出了随机微分方程解稳定时选取步长的范围,并给出了具体的数值算例,以验证该方法的有效性,进一步从实际角度验证了本文的结论。
其他文献
该文主要研究了两类非线性方程,即(2+1)维非线性浅水波方程和广义NLS-MB方程(GNLS-MB).我们简要回顾了李对称分析和Darboux变换这两种求解方法.对非线性浅水波方程,我们借助于Mac
该论文由三章组成,主要讨论了下列脉冲微分方程关于部分变元的稳定性.第一章,我们介绍了微分方程及脉冲微分方程关于部分变元稳定性的研究情况,给出了与该论文有关的定义.第
遗传挠理论是在二十世纪六十年代发展起来的,Golan,Gabriel,Dickson,Stenstrom等对遗传挠理论进行了大量深入的研究.该文专门探讨由一个给定模u确定的一般挠理论.这种挠理论
我们为[1]中的Sarkovskii定理证明作了补充.同时给出了f(x)的某种单边收敛性质及其证明,其中f(x)收敛到周期为q的f(x)的一个周期轨道.并且给出*-积运算的保序性和其它性质.在
Schnakenberg反应扩散模型描述的是化学反应中的一种自催化反应,对这个模型的动力学性质许多学者都进行了研究,并且得到了一些很好的结果。尽管反应扩散系统已受到许多学者的关
设λK是有υ个顶点的完全多重图,其中任意两个相异顶点x和y都由λ条边(x,y)相连.G是有限简单图.一个G-设计(G-填充),记作(υ,G,λ)-GD((υ,G,λ)-PD),是指一个序偶(X,B)其中X
该文研究黎曼空间形式以及de Sitter空间中的完备超曲面.首先考虑球空间S(1)中的n维紧致极小超曲面,通过第二基本形式长度的平方的控制,证明了Clifford极小超曲面的刚性结果.对