铷原子的电磁诱导透明精密光谱及其激光稳频应用

来源 :中国科学院大学(中国科学院精密测量科学与技术创新研究院) | 被引量 : 0次 | 上传用户:beauty85123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
光与物质相互作用的研究是原子分子物理领域的一个重要研究内容,其中一个突出的例子就是电磁诱导透明(Electromagnetically induced transparency,EIT)。在 EIT 中,弱的探测光在介质中传播的光学特性会受到强的耦合光的控制。EIT是光与物质相互作用表现出来的一种非线性效应,如介质的透射性提高、色散性增强等,在慢光、激光稳频、无反转激光、原子磁力计和精密测量等众多领域中应用广泛并受到大量的关注。在外磁场中,原子能级会发生复杂的塞曼分裂,EIT技术为研究原子的塞曼效应提供了一种精密的光谱学探测手段。此外,里德堡原子拥有大的跃迁电偶极矩而在电场测量中具有特殊的应用价值,Rydberg-EIT已经发展成为一种可行的高精度的弱射频电场测量技术。本论文采用双光子共振技术,研究了铷原子在外磁场和微波电场两种不同情况下的非线性光学特性以及高分辨率光谱。论文的主要研究内容如下:(1)研究了零磁场下铷原子D2线中的Λ型EIT光谱以及磁场下相应的EIT塞曼分裂光谱,并基于铷原子D2线中的Λ型EIT共振光谱实现了激光器的频率锁定。首先,在实验上获得了零场下的铷原子D2线的基态(5S1/2)与低激发态(5P3/2)的超精细结构能级构成的多能级体系的Λ型EIT高分辨率光谱。在此基础上,测量了铷原子在外部施加磁场方向与光传播方向平行、正交两种情况下的EIT磁场分裂谱。基于EIT色散理论和塞曼磁场相互作用哈密顿量,构建了谱线模拟模型并很好地解释了实验观测结果。最后,利用铷原子在外磁场下的高分辨率的EIT塞曼分裂谱实现了激光器的频率可调谐偏移锁定,激光器锁定之后频率具有高稳定性,并可通过调节外部施加磁场的大小改变EIT共振光谱的频率位置从而改变激光频率的锁定位置。(2)研究了零磁场下铷原子在基态5S1/2态-第一激发态5P3/2态-高里德堡态nD态梯型构型中的EIT光谱以及磁场下相应的EIT偏振光谱,并基于零场和磁场下的EIT偏振光谱的线性组合实现了一种无调制的人工PDH激光稳频技术。采用780 nm激光和480 nm激光的光学双共振泵浦效应,将铷原子从基态激发到里高德堡态,即5S1/2→5P3/2→48D5/2,获得MHz量级分辨率的里德堡EIT光谱,研究了 85Rb原子48D5/2态的梯型EIT共振光谱随探测光光强以及铷气室温度的变化。随后我们在实验上测量了不同温度和不同磁场下的85Rb原子48D5/2态的EIT的偏振光谱。最后,基于零场和磁场下的EIT偏振光谱的线性组合构造出一个人工的无调制的PDH误差锁定信号,实现了激光器的人工PDH频率锁定。相应的人工PDH激光稳频系统具有良好的频率稳定性和抗环境干扰能力,使激光频率在由于外界干扰远离中心锁定频率时依旧能够重新回到中心锁定频率位置。(3)研究了零场下铷原子在基态5S1/2态-第一激发态5P3/2态-高里德堡态nS态的梯型构型中的EIT光谱以及在微波电场下的EIT-AT光谱。首先不施加微波电场,测量零场下85Rb原子50S1/2态的梯型EIT光谱,然后研究了在不同强度的微波电场下的EIT-AT光谱。EIT-AT光谱的劈裂是由于里德堡态与微波电场之间相互作用而导致的AT效应(Aulter-Towns effect)。相应的EIT-AT光谱的两个峰的劈裂间隔与施加的电场强度成正比。最后利用85Rb原子里德堡态EIT系统作为原子天线实现对空间中的射频电信号的探测以及信号的传输。
其他文献
《义务教育美术课程标准(2011年版)》提出:"教师应广泛利用美术馆、图书馆、博物馆、艺术家工作室、艺术作坊、动植物园、公园、游乐场、商店、社区、村庄等校外的课程资源,开展多种形式的美术教育活动。"美术教师要拓展校外美术教育资源,引领学生在更广阔的社会空间感知作为文化载体的美术,在实践情境中培养学生的审美能力,涵养学生的人文精神。以博物馆为例,作为传承文明、彰显厚重文化的公共教育场所,
期刊
奇点大学是美国先进的企业家学校,也是受全球关注和效仿的企业教育标杆,它旨在解决人类面临的重大挑战。目前,奇点大学的创新课程项目将过去面向个人、创业公司、企业三大类改为面向个人和组织两类。通过对奇点大学创新课程项目的课程理念、课程内容、课程主客体、教学方式、课程结果等方面的具体研究,总结其课程项目体系的先进性、系统性、全球性、多样性等特色和优势,揭示美国企业家学校何以成功的内在逻辑。对美国奇点大学与
科学技术发展到今天,它们之间的互动共进已经成为研究开发活动的一个重要特征,而互动的结果一方面缩短了科学转化为技术应用的进程,另一方面伴随着原始技术创新,必然推动科学问题的破解。这种科学与技术互动共进的发展特征在研发活动的成果文献呈现方式上表现出越来越强的期刊论文和专利的关联。即同时期出现一定数量的相同前沿主题的论文与专利,其中更为密切的关联是专利引用了论文,甚至论文作者和专利发明人是同一个人。这提
学位
核磁共振(Nuclear Magnetic Resonance,NMR)现象自上世纪发现以来,在分析化学、生命科学以及医学诊断领域受到了广泛应用。目前磁共振最常见的应用场景分别是成像和波谱。磁共振成像是一种非侵入、无电离辐射的临床成像手段,能获得多对比度的图像,在临床诊断中发挥了重要作用。磁共振波谱是一种常用的化学、代谢组学分析手段,能提供丰富的化学结构和代谢动力学信息。近年来,深度学习方法被成功
极紫外光学频率梳(以下简称“极紫外光梳”)不仅是精密测量物理领域不可或缺的工具,它的诞生也为强场超快科学领域的相关研究带来了新的契机。在精密测量物理领域,利用极紫外光梳可以开展类氢或类氦离子的1S→2S跃迁的精密光谱测量(如He+的1S-2S跃迁位于60.8nm,Li+的1S-2S跃迁位于41nm),有助于在更高精度上检验束缚态量子电动力学理论;而基于钍-229原子核能级跃迁的精密光谱测量(位于1
泛素-蛋白酶体系统对于维持细胞中蛋白质的稳态至关重要,蛋白酶体上泛素受体对多聚泛素链的识别是蛋白酶体介导底物降解的第一步,研究泛素受体对泛素链的特异性识别机制有助于我们更好地理解泛素-蛋白酶体系统。泛素受体Rpn13识别K48-泛素链可以促进蛋白酶体对泛素化底物的降解,然而目前只报道了 Rpn13NTD与泛素单体的复合体结构,Rpn13如何特异性地识别K48-泛素链还并不清楚。利用单分子荧光共振能