论文部分内容阅读
光与物质相互作用的研究是原子分子物理领域的一个重要研究内容,其中一个突出的例子就是电磁诱导透明(Electromagnetically induced transparency,EIT)。在 EIT 中,弱的探测光在介质中传播的光学特性会受到强的耦合光的控制。EIT是光与物质相互作用表现出来的一种非线性效应,如介质的透射性提高、色散性增强等,在慢光、激光稳频、无反转激光、原子磁力计和精密测量等众多领域中应用广泛并受到大量的关注。在外磁场中,原子能级会发生复杂的塞曼分裂,EIT技术为研究原子的塞曼效应提供了一种精密的光谱学探测手段。此外,里德堡原子拥有大的跃迁电偶极矩而在电场测量中具有特殊的应用价值,Rydberg-EIT已经发展成为一种可行的高精度的弱射频电场测量技术。本论文采用双光子共振技术,研究了铷原子在外磁场和微波电场两种不同情况下的非线性光学特性以及高分辨率光谱。论文的主要研究内容如下:(1)研究了零磁场下铷原子D2线中的Λ型EIT光谱以及磁场下相应的EIT塞曼分裂光谱,并基于铷原子D2线中的Λ型EIT共振光谱实现了激光器的频率锁定。首先,在实验上获得了零场下的铷原子D2线的基态(5S1/2)与低激发态(5P3/2)的超精细结构能级构成的多能级体系的Λ型EIT高分辨率光谱。在此基础上,测量了铷原子在外部施加磁场方向与光传播方向平行、正交两种情况下的EIT磁场分裂谱。基于EIT色散理论和塞曼磁场相互作用哈密顿量,构建了谱线模拟模型并很好地解释了实验观测结果。最后,利用铷原子在外磁场下的高分辨率的EIT塞曼分裂谱实现了激光器的频率可调谐偏移锁定,激光器锁定之后频率具有高稳定性,并可通过调节外部施加磁场的大小改变EIT共振光谱的频率位置从而改变激光频率的锁定位置。(2)研究了零磁场下铷原子在基态5S1/2态-第一激发态5P3/2态-高里德堡态nD态梯型构型中的EIT光谱以及磁场下相应的EIT偏振光谱,并基于零场和磁场下的EIT偏振光谱的线性组合实现了一种无调制的人工PDH激光稳频技术。采用780 nm激光和480 nm激光的光学双共振泵浦效应,将铷原子从基态激发到里高德堡态,即5S1/2→5P3/2→48D5/2,获得MHz量级分辨率的里德堡EIT光谱,研究了 85Rb原子48D5/2态的梯型EIT共振光谱随探测光光强以及铷气室温度的变化。随后我们在实验上测量了不同温度和不同磁场下的85Rb原子48D5/2态的EIT的偏振光谱。最后,基于零场和磁场下的EIT偏振光谱的线性组合构造出一个人工的无调制的PDH误差锁定信号,实现了激光器的人工PDH频率锁定。相应的人工PDH激光稳频系统具有良好的频率稳定性和抗环境干扰能力,使激光频率在由于外界干扰远离中心锁定频率时依旧能够重新回到中心锁定频率位置。(3)研究了零场下铷原子在基态5S1/2态-第一激发态5P3/2态-高里德堡态nS态的梯型构型中的EIT光谱以及在微波电场下的EIT-AT光谱。首先不施加微波电场,测量零场下85Rb原子50S1/2态的梯型EIT光谱,然后研究了在不同强度的微波电场下的EIT-AT光谱。EIT-AT光谱的劈裂是由于里德堡态与微波电场之间相互作用而导致的AT效应(Aulter-Towns effect)。相应的EIT-AT光谱的两个峰的劈裂间隔与施加的电场强度成正比。最后利用85Rb原子里德堡态EIT系统作为原子天线实现对空间中的射频电信号的探测以及信号的传输。