耗散格点动力系统吸引子的存在性及其在二阶格点系统的应用

来源 :上海大学 | 被引量 : 0次 | 上传用户:madiawang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
无穷维动力系统在非线性科学中占有极为重要的地位。全局吸引子是无穷维动力系统的最重要内容之一。格点系统是一类很重要的无穷维动力系统。本文主要利用钟承奎等关于Hilbert空间上一般的连续算子半群吸引子的存在性条件[1],得到了无穷序列组成的Hilbert空间上由无穷格点动力系统的解定义的算子半群的吸引子存在的充要条件。作为应用的一个例子,我们考虑了包含所有有界序列的加权无穷序列组成的空间上的一个二阶格点系统全局吸引子的存在性。
其他文献
本文研究了有脉冲的一阶泛函微分方程周期正解问题的存在性,以及其在具体的生物数学模型问题中的应用。主要结果是利用锥不动点定理证明的,这个结果是在文献[1-3]的基础上更一
本文对一类椭圆型方程解的存在性及多重性进行了研究。在讨论中总假设p>1,Ω为R(Ⅳ≥1)中的带有光滑边界aQ的有界区域.早在1973年,Ambrosetti和Rabinowitz利用著名的山路引理得
本文首先从Hall定理的推广出发,利用模糊数学的分析方法(模糊因子法)及Gale-Shapley算法研究了在现实婚姻的形成过程中的平等性问题,即“双式”理论在一定条件下是成立的.并受其
本文在经典的风险模型的基础上,从实际需要出发,对其进行各种各样的改造,同时考虑了重尾和轻尾的两种情况,得出了关于破产概率和大偏差的几个结果。 在第二章中,考虑了带干扰的
本文对单位球面中子流形的两个问题进行了研究.一类是不仅具有常数量曲率,而且仅有两个不同主曲率,其中一个是单重的紧致超曲面的等距问题;另一类是可定向紧致子流形的球面定理
学位
本文对组合反演关系的若干问题进行了研究。文章分为三个部分: 第一章介绍了组合反演理论的历史及其在组合数学与特殊函数领域中的几个重要结果,引入作为重点研究的(f,g)-反