论文部分内容阅读
随着移动通讯和计算机技术的迅猛发展,叠层片式电感作为一类重要的电子元器件,得到了广泛应用和深入研究。铋钙钒系列石榴石铁氧体有着良好的磁性能和烧结特性,且成本更低,成为低温烧结石榴石铁氧体的最佳选择。本文围绕低温烧结Bi-CVG铁氧体的电磁特性以及掺杂对其的影响进行了较为系统的研究。本文以Y2O3、Fe2O3、Bi2O3、V2O5、CaCO3、In2O3和B2O3为原料,采用传统的陶瓷工艺制备了Bi-CVG系列铁氧体材料。首先探讨烧结工艺条件对改善主配方Bi-CVG铁氧体微观结构和磁性能的作用;其次研究了掺杂、烧结温度等因素对Bi-CVG系列铁氧体性能的影响规律和作用机制。通过X射线衍射仪分析(XRD)、扫描电子显微技术(SEM)、软磁材料自动测试系统(MATS)、射频阻抗/材料分析仪等方法考察了不同烧结温度、保温时间对产物体积密度、晶体结构、形貌、磁性能和介电性能的影响。结果表明:(1)选择适当的预烧温度(900℃)可以有效提高Bi-CVG铁氧体的密度;烧结温度对相稳定性和电磁性能影响显著,而保温时间对其影响相对较小。当烧结条件为1100℃×6h时,所制备的Bi-CVG样品性能良好,平均晶粒尺寸约2μm,密度为5.20g/cm3;主要性能为Br=24.57mT,Hc=764.4A/m,4πMs=343.2×10-4T,tanδε=4.34×10-4,ε=13.92。(2)In取代可以改善Bi-CVG铁氧体的磁性能和介电性能。适量的In取代使样品的相对密度、饱和磁化强度Ms、剩磁Br和电阻率ρ增大;而矫顽力Hc、介电损耗tanδε和介电常数ε均降低;同时In取代促进了Bi-CVG铁氧体的晶化,使烧结温度有所降低。本实验发现In的最佳取代量在x=0.4~0.6范围内。(3)掺B可以有效降低Bi-CVG铁氧体的烧成温度。随着B掺杂量的增多,Bi-CVG铁氧体的电阻率逐渐增大,介电损耗tanδε、剩磁Br、和饱和磁化强度4πMs和矫顽力Hc略有降低。在1060℃×6h条件下烧结B2样品,其电磁特性较佳:室温时D=5.11g/cm3,DR.T=97.2%,Bs=37.30mT,Br=25.54mT,Hc=0.87kA/m,ρ=3.67×1010Ω·cm,tanδε=3.94×10-4。本论文工作所研制的Bi-CVG系复合石榴石铁氧体材料,在维持电磁特性较佳的同时,烧结温度有了较大幅度的降低,完全满足同银钯(Ag-Pd:1145℃)电极共烧的要求,在低温烧结方面表现出独特的优势,因而具有良好的应用前景。