镍基合金表面激光熔覆制备硅化物复合梯度涂层的组织与性能研究

来源 :南京理工大学 | 被引量 : 0次 | 上传用户:avim03
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
镍基合金因具有优良的抗高温氧化性能和优异的综合力学性能,被广泛应用于航空、航天发动机等领域。但随着航天器的发展,对火箭发动机材料的综合性能有了更高的要求,而传统镍基合金已经不能满足发动机使用工况要求,在其表面制备高温抗氧化涂层是满足发动机部件更苛刻使用要求的有效途径。MoSi2具有金属与陶瓷的双重性质,在高温氧化时表面会形成一层致密、连续和具有自修复性的保护膜,是一种理想的高温抗氧化涂层材料。但MoSi2较大的室温脆性大大限制了其作为涂层材料的应用。本文利用激光熔覆技术在镍基合金GH3600表面制备MoSi2涂层,研究工艺方法对制备MoSi2涂层组织与性能的影响规律,通过添加SiC颗粒和Ni合金化实现对涂层的增韧,通过多层熔覆制备SiC含量梯度变化的复合梯度涂层以降低层间内应力而减少开裂,研究SiC含量对激光熔覆SiC/Mo-Si-Ni复合和梯度涂层的组织与性能的影响规律,为镍基合金表面激光熔覆制备高性能硅化物复合涂层提供实验基础和理论依据。研究结果表明:(1)通过激光熔覆技术在镍基合金表面制备MoSi2涂层,熔覆层组织主要由界面处的平面晶、结合区胞状晶和树枝晶及中上部的等轴晶组成,熔覆层的显微硬度和抗高温氧化性能较基体有明显提高。激光二次重熔获得的MoSi2涂层性能更加优良,其在800℃氧化12h的氧化速率常数为4.21×10-5,熔覆层硬度最大达基体的4.3倍。(2)利用激光熔覆技术在镍基合金表面制备SiC/MoSi2复合涂层,并通过添加Ni来减少裂纹缺陷。随着SiC含量的增加,组织晶粒细化,熔覆层的稀释率逐渐减小,同时显微硬度、高温摩擦磨损性及抗氧化性能增强。当SiC含量为15%时,涂层高温氧化速率常数仅为3.77×10-5,硬度可达基体的5.4倍。但当SiC含量达到20%时,气孔及裂纹缺陷严重,熔覆层成形困难。(3)通过逐层改变预置粉末中SiC的含量进行激光多层熔覆实验,可以获得无裂纹等缺陷的梯度涂层,熔覆层组织均匀连续地变化,与基体形成良好的冶金结合。涂层显微硬度呈梯度分布,最大值较基体提高近6倍,而且高温摩擦磨损性能也得到提升,但梯度涂层的抗高温氧化性能与单一涂层相比变化较小。
其他文献
学位
硅微机械陀螺是一种利用科氏效应敏感物体转动角速率的微机电系统(MEMS)惯性传感器。以其体积小、质量轻、低成本、低功耗等优点广泛地应用于汽车稳定系统、图像稳定系统、机器人和其它军事及民用领域。随着硅微机械陀螺性能的不断提升,其应用范围变广,环境变得更加恶劣。微机械加工工艺的相对误差较大,限制了硅微机械陀螺仪性能的发展。对温度变化的敏感性则限制了高性能硅微机械陀螺的应用范围,因此研究硅微陀螺仪机械耦
CL-20具有高能量、高爆速、高爆压和高爆热等优点,是目前可实际应用的能量最高的单质炸药,但CL-20机械感度和静电感度均较高,严重阻碍了其进一步应用。本论文针对CL-20机械感度和静电感度高的问题,基于聚多巴胺(PDA)的超强粘附性,采用原位自聚合法在CL-20表面包覆PDA壳层,制备CL-20@PDA复合材料;此外,基于PDA表面大量的羟基和氨基等活性基团,将其作为二次改性平台,通过自组装和弱
随着科学技术的不断发展,5G时代已经来领,电磁波的应用已经涉及到各个领域,特别是在工业生产、医疗诊断和国防建设方面。然而,电磁污染日益凸显,给我们的生活环境和国防安全带来了巨大的威胁,因此,开发设计高性能电磁波吸收材料是近年来的研究重点。碳材料具有优秀的介电性能,而磁性颗粒具有良好的磁性能,通过复合等手段可以有效调控材料的介电常数和磁导率,以同时达到阻抗匹配和衰减特性。因此,磁性金属/碳基纳米复合
六角Mg Zn2型Hf1-xTaxFe2((Hf,Ta)Fe2)合金是一类典型的磁相变合金,其在冷却过程中发生具有成份依赖性的反铁/顺磁-铁磁相变。这种磁性相变伴随了明显的体积膨胀,表明这类合金是负热膨胀材料。它可以与正热膨胀材料复合,构建零热膨胀复合材料。后者在精密仪器制造领域具有重要的应用价值。然而,基于(Hf,Ta)Fe2的零热膨胀复合材料及其制备方法却鲜有报道。本论文通过在(Hf,Ta)F
锂离子电池因具有能量密度大、使用寿命长、无环境污染等优点而被广泛应用。由于单粒电池储能有限,一般将多粒电池模组通过串联或并联的方式组成电池模组以满足高能量的需求,但当电池模组中的某粒或多粒电池发生热失控时会影响周围电池,甚至引发电池模组热失控。本文对过充滥用条件下锂离子电池热失控以及蔓延规律进行研究。首先详细分析了锂离子电池热失控机制,设计并搭建了用于锂离子电池模组热失控蔓延规律研究的实验系统,依
超细晶铜由于其晶粒尺寸小,表现出优异的力学性能。然而晶界形态及数量的变化可能使得超细晶铜基材料硬度、摩擦学性能降低,因此研究其热稳定性具有重要的实际意义。石墨烯作为一种高润滑性材料,为提高超细晶铜基复合材料的摩擦学性能提供了新思路。本文探索了工艺参数对电沉积超细晶铜的影响,研究了最佳工艺条件下电沉积超细晶铜的热稳定性,并通过添加石墨烯,提高了材料的耐磨性。本文首先利用脉冲电沉积法制备超细晶铜,研究
本文以某箱型基础-蝶形结构为研究对象,采用数值模拟方法,研究了该结构的抗震性能。建立了箱型基础-蝶形结构的数值模型;将建模方法用于文献中一相似的箱型基础,进行数值分析并与其工程实测数据比较,验证了数值分析模型的合理性;考虑蝶形结构翅膀角度分别为30°、60°和90°的情况,以EIcentro波、San Fernando波和Taft波为激励,对整个箱型基础-蝶形结构进行了动力时程分析,研究了箱型基础
热电转换技术是利用半导体材料直接将热能与电能进行相互转换的绿色能源技术。碲化锰(MnTe)材料具有元素无毒、来源丰富、低成本等优势,是前景广阔的环境友好型中温热电材料。本文围绕多晶MnTe通过纳米复合和载流子浓度优化调控热电性能进行研究。成功利用SnTe纳米晶调控MnTe材料能带,促进能带收敛和载流子多价带传输,大幅提升塞贝克系数,同时SnTe纳米晶增强声子散射,抑制晶格热导率,材料热电性能得到极
随着网络通信技术的不断发展和便携式移动设备的普及,移动自组网(Mobile Ad Hoc Network,MANET)逐渐成为了研究网络通信领域的热点。移动自组网中节点具有移动性,网络拓扑动态变化,在这种网络中进行数据传输极易受到拓扑改变的影响,网络性能也因此下降。网络编码技术不同于传统的存储转发模式,中间节点对于数据包进行编码和转发,可以提高网络编码的吞吐量,可靠性等性能。以提高MANET网络性