【摘 要】
:
近些年来,量子信息学的发展极大推动了光场非高斯态的理论和实验研究,这是由于它的重要性远远超过了传统的高斯态。尤其是非高斯纠缠态,它能够弥补传统高斯纠缠态在量子信息处理中的不足,实现决定量子通讯成败的最佳纠缠蒸馏,从而有效提高传统高斯态的纠缠度和改善一些实际的量子信息处理过程。而且,作为一种新的量子信息资源,不仅能为长距离量子信息处理提供新的物理载体,还可推动光场量子态调控工程的发展。鉴于非高斯量子
论文部分内容阅读
近些年来,量子信息学的发展极大推动了光场非高斯态的理论和实验研究,这是由于它的重要性远远超过了传统的高斯态。尤其是非高斯纠缠态,它能够弥补传统高斯纠缠态在量子信息处理中的不足,实现决定量子通讯成败的最佳纠缠蒸馏,从而有效提高传统高斯态的纠缠度和改善一些实际的量子信息处理过程。而且,作为一种新的量子信息资源,不仅能为长距离量子信息处理提供新的物理载体,还可推动光场量子态调控工程的发展。鉴于非高斯量子态在量子光学和量子信息学中的重要性,本文主要在理论上探讨了一系列非高斯态的实现、非经典性质及其在振幅衰减通道中的退相干演化。本文的主要研究内容包括如下三个方面:1.推导出了压缩埃尔米特(Hermite)多项式态的归一化因子,探查了此态的压缩、光子数分布和维格纳(Wigner)函数,分析了压缩操作和埃尔米特多项式产生操作对它们的影响。此外,利用热纠缠态表象研究了压缩埃尔米特多项式态的密度算符及其维格纳函数在振幅衰减通道中的退相干演化。2.利用光学分束器算符以及多光子增加或扣除操作,在理论上制备出了双模二项式态及其衍生态,并研究了它们的光子数分布、维格纳函数、边缘分布函数以及纠缠特性。3.把多光子增加或扣除操作作用到双模压缩热态,在理论上制备出了两类新的非高斯混合纠缠态,并利用算符排序导出了它们的归一化因子;研究了这两类非高斯混合纠缠态的EPR关联、隐形传态保真度,并分析了光子增加或扣除操作对EPR关联和隐形传态保真度的影响。此外,基于纠缠态表象,推导出了维格纳函数及其在振幅衰减通道中的演化的解析表达式,并根据它们的部分负性讨论了相应量子态的非经典性质。
其他文献
伴随网络技术发展和移动终端多样化,学习者得以随时随地获取互联网中的学习资源,泛在学习逐渐成为数字化时代的新学习样态。泛在学习所带来的学习内容和学习方式的鲜明变化冲击着人们对传统学校、校园和教师的概念,渲染出学校教育将在泛在学习冲击下消亡的可能性。但应当明确,学校教育之所以能够在不同时代不同社会中承担主要的教育任务且至今未变,是因为其教育供给始终依据学习者个体需求和社会对劳动者的需求而调整。学校的存
本论文课题为铷85-铷87超冷混合气体的实验平台搭建与高分波Feshbach共振研究。作者作为设计者和第一搭建者介绍了我们实验小组第二套冷原子系统――超冷里德堡原子及铷85-铷87超冷混合物平台,论文内容将涉及到真空系统、激光系统、时序控制系统、微波系统、磁场控制系统、电场控制系统、原位成像系统、离子探测系统等诸多子系统的设计、搭建和组合。我同时将介绍铷85-铷87超冷混合物中Feshbach共振
在国家话语体系内,探索行为体如何用语言来建构国家身份的相关热度正日渐升温。此外,国家身份的建构问题也是国际关系研究中不可或缺的组成部分。近年来,在人文学科研究日益呈现出注重交叉与应用研究的大趋势下,国内外学界特别是国内学者以高度的社会责任感表现出以理论联系实际来解读社会现象及参与社会管理的巨大热情。尤其面对当前复杂的国际情势,对国家身份建构的相关研究不仅仅是国际政治研究领域的热门课题,话语研究领域
随着物联网、区块链、5G、大数据和人工智能技术的快速发展,大规模的智能设备接入物联网中,产生了海量的物联网数据。基于物联网、区块链、密码学等技术,能够对海量数据进行采集、存储、分析及挖掘,加快物联网设备走向智能化进程,提升用户体验。然而,大量的物联网数据由数据持有者独立享有,采用中心化服务器对数据进行管理,形成了数据孤岛。同时,物联网设备资源的有限性,进一步阻碍了数据潜在价值的实现。为了解决物联网
光和原子相互作用是量子光学的主要研究内容。其常用的研究方法包括仅把原子量子化的半经典理论,以及把光场和原子都量子化的全量子理论。光和原子的相互作用表现出很多独特的量子现象,如拉比震荡、相干布居俘获、慢光和里德堡阻塞等。本文研究光场和原子相互作用的过程,我们不仅关注光场的变化,也关注原子的行为。全文主要分为两个部分:一是光场的相干调控及其应用,二是这一过程中由单原子构成的自给式热机。光的相干调控是指
Hopf代数是代数学中的重要分支,不变量是数学研究中重要课题,其中自同构群是一个非常重要的不变量,本学位论文将研究若干类Hopf代数上双积的自同构群.由于确定代数的完全自同构群通常非常困难,本文主要研究满足一定条件的自同构群.鉴于张量范畴研究的迅速发展,将进一步在严格辫子张量范畴中研究扭曲张量双积的Hopf代数自同构.在后续研究中,讨论了相对Hom-Hopf模范畴作成张量范畴的充要条件.本文共五章
随着计算机能力和科学技术的快速发展,人们获得的数据所包含的信息越来越多,高维数据的统计推断问题研究已经成为十几年来炙手可热的研究热点.在一些实际问题中,除了样本信息之外,通常人们还可以获得有关回归系数的相关信息.利用这些回归系数的信息,很大程度上可以提高估计的效率,进而提高模型的效率.另外,在许多回归问题中,我们需要找出对预测响应变量起重要作用的解释因素,而这些因素通常具有组结构的特点.常见的例子
图像修复、压缩感知与机器学习等科学计算领域中的一些问题常化成带线性等式约束的可分裂凸规划问题,同时在通信系统、控制系统、电力系统、信号处理等工程应用中的一些问题也可以化成广义周期Sylvester矩阵方程。本文主要讨论求解这两类问题的迭代算法,同时分析算法的收敛性质,并通过数值仿真验证所设计算法的有效性。全文共分八章。第一章简要介绍两类问题的研究背景、研究现状及本文的研究内容。通过回顾带线性等式约
量子纠缠是量子信息与量子计算最为核心的资源,利用这种资源可以完成经典信息系统无法完成的任务,如量子隐形传态、量子密集编码、基于纠缠态的量子密码术等。在对处于纠缠态的量子系统进行操作的过程中,要最大程度地保持初始纠缠量,这是利用量子纠缠实现量子信息和量子计算的前提条件之一。然而,真实的量子系统不可能完全脱离环境,量子系统不可避免地与周围的环境相耦合而导致量子退相干,这是实现量子信息处理的主要障碍,所
非线性泛函分析是当今数学领域中一个具有广泛应用价值的重要研究方向:该方向的创立旨在将现实领域中出现的各种现象抽象成非线性数学问题,进而创立了一系列处理非线性问题的理论和方法.非线性泛函分析的主要内容和方法包括解析方法、半序方法、拓扑度理论、临界点理论和单调映射理论等.这些重要方法和理论可广泛的应用于非线性积分方程、常微分方程、偏微分方程和其他各种类型方程及其边值问题的研究.分数阶微分方程边值问题是