光纤微球谐振腔回音壁模式结构的研究

来源 :中国计量大学 | 被引量 : 0次 | 上传用户:peter_wan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
光学微腔的发展在现代科学中占据重要的地位。回音壁模式(whispering gallery mode,WGM)谐振腔由于其:品质因子高,模式体积小,容易制备,成本低廉的优点,受到了研究人员的关注。WGM现象的产生依赖于微球的尺寸、形状、材料和耦合方式,所制造的谐振器被广泛的应用于温度、压力等灵敏度的测量,或是低阈值激光器,窄带宽滤波,非线性光学等方面的研究。本文讨论了WGM模式的发展历程与理论基础,并提出两种新型WGM谐振器,具体内容如下:1、介绍了回音壁模式的基本概念,对其发展历程和研究现状进行了综述。介绍了WGM谐振腔在理论研究与应用等方面的发展,介绍了现有的几种结构的WGM微腔,对比了不同耦合方式下WGM谐振腔的优劣。确定本文的研究目标。2、从几何光学和模式分布的角度简单介绍了WGM的耦合原理,介绍了有关于WGM微球腔的四个参数作为评价实验结果的重要指标,最后引入法诺(Fano)共振模型介绍了Fano线型产生的原理。3、提出了一种光纤线内嵌入微球的WGM谐振器。通过飞秒激光微加工技术结合电弧放电在光纤内部制造空气腔,微腔膨胀使纤芯弯曲从而产生马赫-曾德干涉(MZI),将微球嵌入空气腔内以激发WGM。本章详细描述了制造原理与实验操作流程。该器件的品质因数Q为1.81×103;Fano线形斜率为13.88 d B/nm。同时分析了在WGM模式中对称的窄线宽洛伦兹(Lorentzian)线型在低Q值的MZI谱线的作用下转化为非对称的Fano线型的原理,并可以通过直接改变波长范围在非对称的Fano线型和对称的Lorentzion线型之间进行选择。该器件稳定,抗干扰能力强,具有作为光开关或光切换研究的潜能。4、提出了一种光纤端面刻蚀凹槽的WGM谐振器。该器件是通过在SMF上依次熔接一段无芯光纤(NCF)与一段多模光纤(MMF),利用MMF可以被氢氟酸腐蚀的特性在端面形成一个底部为弧形的凹槽,利用紫外(UV)胶在底部粘连一颗微球并将紫外胶固化。器件具有较高的Q因子~1.21×104,其温度灵敏度为3.47 pm/℃。作为单端口式WGM谐振器,该器件在传感、生物探测等方面具有很大的潜质。本文提出的两种光纤谐振器具有机械强度高,易于制造,体积小,成本低的优点。
其他文献
数字经济通过直接效应和间接效应对产业绿色高质量发展产生作用。文章以中国2012—2019年31个省市的相关数据进行分析。研究发现:数字经济对产业绿色高质量发展具有积极影响,在区域差异方面,东部地区数字经济效益明显优于中部地区,而西部地区不显著;从门槛效应和空间溢出效应检验发现,数字经济对产业绿色高质量发展的推动效应具有非线性递增和空间溢出特征。为此,要通过数字技术升级绿色技术,实施数字化区域差异化
本世纪初开始,全球通信技术迎来爆发式发展,其中的核心技术光通信技术也随之发展迅猛,光开关、调制解调器等器件的核心部件都基于永磁材料,其中永磁材料的性能优劣直接影响着器件的性能的发挥。永磁材料历经几十年的高速发展,现已发展至第三代稀土永磁材料,并在社会及生产中发挥着重要的作用,但稀土产业的不平衡及稀土永磁材料对稀土资源的不平衡利用造成的一系列问题逐渐影响着稀土行业的继续发展,因此寻找价格更低、来源更
电卡效应制冷因其高效灵活的特点而备受关注。钛酸铋钠(Bi0.5Na0.5Ti O3,简称BNT)基陶瓷在准同型相界(MPB)表现出优异的性能;另外,有望通过稀土元素掺杂集成多种性能的稀土掺杂压电陶瓷被人们广泛关注。本文旨在研究Er3+掺杂对不同BNT基铁电陶瓷的电卡效应及发光温度特性的影响,主要内容如下:1.Er3+掺杂位于MPB区域的0.956Bi0.5-xNa0.5Ti O3-0.044Ba(
可充/放电的二次电池对于改善化石能源造成的污染发挥着很大的作用,但是锂离子电池的能量密度逐渐难以满足现实的产业需求。由于锂硫电池超高的体积容量密度和长时间的循环稳定性,使得它成为了下一代储能设备最有潜力的发展方向。但是由于硫本身是绝缘体不导电,充/放电过程中电极体积变化较大以及其著名的“穿梭效应”急剧地加大了其研发和实际应用的难度。硒元素作为硫的同主组元素,当它作为电极材料时同样拥有很可观的体积容
P型CuSCN无机半导体材料具有合适的能级位置、优异的化学稳定性、高的空穴迁移率、低成本等优点,在太阳能电池、光电探测器、发光二极管和场效应晶体管等器件上具有极大的应用潜力。作为空穴传输层材料,如何进一步提高电荷传输特性是目前的难点。本文采用电化学沉积法和旋涂法制备了p型CuSCN基异质结薄膜,获得了具有良好的光电化学性质的空穴传输材料,进而促进其在太阳能电池和光电化学领域的应用。内容主要包括:(
随着以基因芯片为代表的高通量测量技术的发明和广泛应用,生物数据出现了爆炸式增长,有效利用这些数据理解其背后的生物网络是系统生物学最核心的任务之一。由于生物系统测量数据的复杂性,需要发展适合生物数据特点的新的数学方法,因此以动力系统、概率网络、软计算方法、Granger因果网络推断等为基础的数学方法不断被应用于基因调控网络重构、蛋白质相互作用网络重构、神经元网络重构等数据驱动的生物系统建模研究中。本
高精准度的原子钟不仅仅在提高时间频率的测量精度方面有重要贡献,还为相关基础物理量的研究和测量提供了重要手段。近些年来,工作在光学频段的原子钟研究取得了重大进展,光钟的频率不确定度和精度能够达到很高的水平。未来国际单位制的“秒”极有可能通过光钟来复现,代替现有的铯原子喷泉钟。异地光钟的比对需要将钟激光进行远距离高精度地传输,光纤是目前最有效的传输媒介。但是窄线宽激光在光纤传输的过程中,复杂的外部环境
受益于镧系离子(Ln3+)的丰富且具有特征性的激发能级,Ln3+激活上转换纳米晶由于在生物成像、光学多路复用、温度传感以及防伪和显示等多个领域具有应用潜力而备受关注。迄今为止,诸如Er3+、Ho3+、Tm3+、Tb3+、Eu3+、Sm3+、Dy3+和Ce3+等一系列离子作为激活剂已被广泛研究,且常共掺有敏化剂(Yb3+或Nd3+离子)。上转换发射范围从紫外到近红外,发射光的颜色与所掺杂镧系元素的种
新时代背景下,高职人才“工匠精神”的培育模式探索,不仅对推动高职教育的创新发展有重要意义,而且能够促进我国“制造业强国计划”“中国质造”等国家战略的落实。“工匠精神”在新时代也被赋予了新的内涵,本文在分析德国、美国等发达国家有关高职人才工匠精神的培育实践,梳理先进经验,从我国高职人才“工匠精神”培育模式现状剖析,提出了加强实训基地建设、改进课程体系设置、引入“双标准”考评制度、完善相关立法等完善对
本文基于2011—2019年沪深A股上市公司数据,采用北京大学数字金融研究中心发布的数字金融普惠金融指数度量地区的数字金融发展程度,考察数字金融发展对当地企业全要素生产率的影响及机制。实证结果显示,数字金融发展显著地促进了当地企业全要素生产率的提升,且影响效应呈动态衰减特征。经内生性处理以及稳健性检验后,结论仍然成立。将指数进行升维后,发现数字金融覆盖广度和使用深度的提升均有助于提高企业全要素生产