论文部分内容阅读
养殖废水已成为我国城郊及农村面源污染的主要来源之一,其主要污染物为有机物和氨氮。有效地去除养殖废水中的有机物,减少氮素污染是我国水污染治理及水环境改善领域的重点研究方向。现阶段多采用生物法处理中高浓度的含氮有机废水,且厌氧生物处理法是在无分子氧的条件下由不同功能的微生物菌群参与的生化处理过程。本研究采用厌氧序批式反应器(ASBR),以模拟的养殖废水为研究对象,在厌氧条件下,分别启动了甲烷化和厌氧氨氧化过程。对影响产甲烷和厌氧氨氧化过程的主要因素进行分析,包括进水方式、底物浓度、温度、p H以及金属离子浓度等,研究了两段式ASBR工艺的启动条件和稳定运行过程。利用扫描电镜分析了厌氧颗粒污泥的形态及微生物菌群特征,实验结果如下:(1)采用有效体积为2.5 L的ASBR,接种J市污水厂的浓缩池污泥,历时50 d,实现了ASBR中产甲烷过程的快速启动,并成功培养出产甲烷颗粒污泥。当进水有机物浓度为3000 mg/L时,出水有机物浓度在80mg/L~100 mg/L之间,COD去除率接近95(4)。为保证ASBR反应器的稳定运行,不断调控运行参数,使反应p H始终保持在7-7.5之间,温度稳定在35℃左右,并在厌氧反应6 h~8 h后出水。(2)采用同样的ASBR工艺,成功启动厌氧氨氧化。启动过程共分为四个阶段:即污泥初期适应阶段(50 d),污泥表现厌氧氨氧化活性阶段(50 d),污泥厌氧氨氧化活性提高阶段(175 d)及厌氧氨氧化活性稳定阶段(75 d)。历时350 d,培养出红色(偏黄红色)的厌氧氨氧化颗粒污泥。稳态运行时,反应器所能处理的氨氮和亚硝态氮浓度分别为240mg/L和320 mg/L,硝态氮的生成量为15 mg/L~20 mg/L,氨氮去除量、亚硝态氮去除量以及硝态氮的生成量之比接近1:1.32:0.26。整个反应周期内,氨氮和亚硝态氮的去除率分别为92(4)和94(4)。(3)颗粒污泥的扫描电镜显示:1号ASBR的产甲烷颗粒污泥以甲烷丝菌和甲烷八叠球菌为主,且二者交叉分布,互营共生;2号ASBR的颗粒污泥主要以红色的厌氧氨氧化菌为主,其直径不足1?m,为球状或卵状结构。(4)将启动成功的产甲烷过程和厌氧氨氧化过程结合,并保持模拟废水在1号反应器的水力停留时间为8 h,在2号反应器的水力停留时间为12 h。当进水COD和NH4+-N浓度分别为1500 mg/L和120 mg/L时,去除率分别接近95%和100%,实现了有机含氮废水中COD和氨氮的高效去除。