论文部分内容阅读
随着经济全球化的发展,能源需求和常规能源供应紧张的矛盾日益加剧,纤维素燃料乙醇正以其清洁、环保和可再生的特性得到世界各国的普遍关注。然而,生物乙醇酶解后的残渣并没有得到良好的研究应用和发展,多作为燃料直接燃烧,造成了巨大的浪费和污染。本文以纤维素燃料乙醇酶解残渣为原料,较为系统地研究了磺化、醚化、氧化氨解等化学改性方法,以期提高酶解残渣中木质素的性能,为进一步开发利用纤维素燃料乙醇酶解残渣提供基础理论依据。主要研究内容包括:磺化改性部分,通过改变亚硫酸化度、用碱量、时间等因素,优化工艺条件,得到性能较好的木质素磺酸盐。将最佳工艺条件下的木质素磺酸盐与环氧氯丙烷接枝共聚,通过改变环氧氯丙烷用量、氢氧化钠用量、反应温度、反应时间等因素,优化工艺条件。氧化氨解改性部分,通过改变过氧化氢用量、氨水用量、反应时间、反应温度等因素,优化工艺条件,得到含氮量较高的木质素聚合物。得到的相关结论如下:1.酶解残渣磺化改性的优化工艺条件为总用碱量(按Na2O计)14%,磺化温度165℃,反应时间2h,亚硫酸化度70%。磺化后所得木质素磺酸盐的磺酸基含量为2.79mmol/g,溶液表面张力为43.9mN/m。2.木质素磺酸盐环氧氯丙烷化改性的优化工艺条件为环氧氯丙烷的用量200%,氢氧化钠的用量2%,反应温度70℃,时间3h。所得产物的环氧值为0.220当量/100g,表面张力为40.8mN/m。3.木质素磺酸盐经环氧氯丙烷化改性后的产物经红外表征,发现在1248cm-1处有芳基醚键的伸缩振动峰,在910cm-1处出现环氧基团的特征吸收峰。说明木质素磺酸盐与环氧氯丙烷确实发生了环氧化反应。4.酶解残渣氧化氨解改性的优化工艺条件为过氧化氢用量6%,氨水用量8%,反应温度90℃,反应时间3h。所得产物的氮含量为10.19%。