动态虚拟网络的映射算法研究

来源 :北京邮电大学 | 被引量 : 0次 | 上传用户:bao302
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着互联网的快速发展,现有的网络体系结构已经难以满足社会的需要,网络僵化问题日益严重。网络虚拟化技术能够将底层网络资源抽象化,允许多个虚拟网络共存于同一底层网络中,是应对网络僵化的有效手段。虚拟网络映射问题是网络虚拟化领域的关键问题,其主要目标是将带有多种约束条件的虚拟网络请求映射到底层网络上,并尽可能地使网络运营商的收益最大化。利用单一的启发式算法解决虚拟网络映射问题存在着容易陷入局部最优值与收敛速度较慢等缺陷,本文提出了基于粒子群思想的元胞遗传虚拟网络映射算法,该算法利用带有演化规则的元胞自动机对传统遗传算法中的选择操作进行改造,使得交叉与变异操作只在元胞邻域内发生,从而降低了超级解的扩散性,提高了算法的全局寻优能力。针对元胞遗传算法收敛速度较慢的缺陷,本文设计了一种基于粒子群算法思想的变异算子,通过引导变异点的选择,有效地消除了变异操作的盲目性,加快了算法的收敛速度。仿真结果表明,该算法可以有效地提高虚拟网络请求接受率与底层网络收益等评价指标。在静态虚拟网络的映射算法中,底层网络为虚拟网络请求分配资源的方案是固定的。实际上,随着虚拟网络请求不断地到来或离去,底层网络的资源碎片化问题愈发严重,虚拟网络请求的接受率也随之降低。因此,对虚拟网络进行动态重映射是十分必要的。在底层网络中,不同重要性的节点对于网络连通性的影响力大小不同,现有的虚拟网络重映射算法没有对底层节点的重要性进行区分,容易在重映射后出现新的资源瓶颈问题。本文提出了一种基于节点重要性的虚拟网络重映射算法,该算法通过一种全新的综合多维度属性的节点重要性评价指标对底层节点的重要性进行区分,周期性地将高负载的重要节点上的部分虚拟节点重新映射到低负载的非重要节点上,并对其关联的虚拟链路进行重映射,以降低底层网络资源的碎片化程度。仿真结果表明,该算法在提高虚拟网络请求接受率与降低重映射链路资源开销等方面均优于现有的虚拟网络重映射算法。
其他文献
近年来,随着网络通信技术的发展、5G(5th generation mobile networks,5G)的商业化以及相关设备的升级换代,虚拟现实(Virtual Reality,VR)服务和应用得到了极大的发展。在VR视频业务的应用场景中,360°全景视频的数据传输量通常是传统视频的数倍以上,且由于用户的QoE(Quality of Experience,QoE)要求时延极低,网络中基站面临的压
风险控制系统的建设逐渐变成了互联网金融行业的核心问题与研究热点。风控系统是指能够为风控策略管理人员提供风控策略配置功能,并且能够将风控策略转换为风控服务的软件系统。但是当前已知文献中的风险控制系统建设存在以下问题:1)目前国内外相关文献的研究主要集中于风险控制理论、大数据挖掘、人工智能模型技术、业务架构等,而系统落地实现方面很少有研究,现有的风险控制系统大多数基于自身特定场景下定制化开发,通用性较
近年来,地空通信作为第五代移动通信网络(Fifth Generation of Mobile Networks,5G)中智能交通系统的重要组成部分,受到了学术界和产业界的高度关注。为了对地空通信系统进行方案设计和性能评估,地空场景下非平稳随机信道模型的研究与实现至关重要。地空信道复杂多变,其非平稳特性难以使用平稳的随机过程描述,Markov非平稳信道模型能很好地模拟真实地空信道信号衰落包络在时间轴
语音增强任务可以分为干扰抑制和声源分离两大类任务,是当今语音信号处理领域重点研究方向之一,同时也是自然语言处理关键前端技术之一,具有重要的研究价值。由于传统语音增强算法对信号做出的假设限制了其应用场景,具有强泛化能力的神经网络算法成为了主流的算法。为此,本文主要围绕基于神经网络的语音增强算法展开了一系列研究。1)针对干扰抑制问题,以时域卷积神经网络作为基础结构,重点考察了掩蔽机制、优化准则、残差块
随着互联网技术的发展与大数据时代的到来,文本数据的规模正在呈爆炸式增长。新闻文本数据中通常蕴含着丰富的高价值信息,然而用户很难从中高效地获取这些有价值的信息。而信息抽取可以从非结构化文本中过滤掉大量的冗余信息,保留高价值、结构化、高可用性的数据。关系抽取作为其重要子任务,旨在从非结构化文本中提取实体之间的关系。同时,关系抽取的结果还可以应用于人物社交网络的构建、知识图谱的构建等下游任务中。为了挖掘
移动边缘计算是一种新兴的体系结构,通过将云资源(例如存储和计算能力)部署到无线接入网络的边缘来增强移动云计算的能力。这为用户提供了强大而高效的计算、存储、能效、移动性、位置以及上下文感知支持。移动边缘计算支持各种需要超低时延的创新应用和服务。然而,在移动边缘计算任务卸载的研究中,高速运动的用户在进行计算任务卸载时会导致计算任务在系统中频繁迁移,从而引入额外的传输时延并降低用户体验。同时,在将移动节
深度学习在图像识别、语音识别、文本匹配等各种复杂任务中都表现出强大的特征表示学习能力,并逐渐应用于自动驾驶、语音控制、恶意应用检测等与用户生命财产息息相关的场景中。然而对抗样本的存在给这些应用蒙上了一层阴影,对抗样本是在正常数据中加入细微扰动所得到的恶意输入,能够导致性能良好的模型做出错误决策,对于图像数据,这种扰动常常难以被人眼发觉。更严重的是,对抗样本表现出迁移性,即用于攻击某一目标的对抗样本
在智能手机飞速发展的今天,人们对手机的依赖性越来越大,自然而然就导致手机内会存储大量的隐私数据,其中包括视频、文件、图片,甚至联系人以及通话记录等。局限于手机自身系统以及相关软件防护的不全面性,导致用户的隐私数据存在非常大的隐患。基于这样的场景,本次设计开发出这款应用系统,帮助用户解决这个后顾之忧。本文在研究Android相关技术的基础上,采用MVC为框架设计并实现主界面隐私数据的获取和展示。从隐
近年来,无人机发展势头迅猛,市场份额爆发式增长,是全球新一轮科技革命和产业革命的热点。无人机以其高灵活性、高机动性和可视距等特性,十分适合作为空中基站,在一些极端情况如火灾、地震以及一些基站信号无法覆盖的情况下可以发挥重大作用。无人机通信自组网具有组网灵活、抗毁性强以及容量大等优点,成为了研究的一大热门。本文针对上述情况,对无人机自组网系统进行了研究,自组网系统包括多架无人机与多个用户,采用时分多
无线通信技术的发展,极大地加速了移动网络数据业务量的增长,而大容量、高速率、低时延等通信指标的升级又进一步加剧了低频段频谱资源的枯竭。为了满足无线通信持续增长的需求,需要研究与开发更高频段的毫米波/亚毫米波段。而毫米波/亚毫米波段拥有丰富的连续空闲带宽资源,具有波束窄和受天气干扰影响小等优势。因此作为第五代(5G,Fifth Generation)移动通信系统通信波段的毫米波乃至于频段更高的亚毫米