论文部分内容阅读
Lur’e控制系统是一类典型的非线性控制系统,在飞行器控制、航空航天控制、液压伺服控制等许多领域具有十分广泛的工程实际背景.对Lur’e系统的研究始于20世纪40年代,由前苏联著名科学家Lur’e在研究飞行器自动驾驶仪时提出.切换系统在控制界的各个领域都有广泛的应用.在其他领域,如生物生态科学、社会科学、交通运输、能源环境等领域也大量存在.如,生物细胞的生长与死亡、飞行器的起飞、穿越与降落,服务器在等候网络缓冲区的切换等等.近年来,切换系统的研究受到越来越多学者的关注.切换Lur’e时滞系统,作为一类含有切换的Lur’e时滞系统,在实际生活中有很广泛的应用.如Hopfield神经网络,Lotka-Volterra生态系统,变结构系统等.基于此,切换Lur’e时滞系统稳定性的研究具有较高的理论与实践意义.本文主要针对切换Lur’e时滞系统的绝对稳定性进行研究,采用不同的研究方法,设计合适的切换信号及李雅普诺夫函数,给出相应结论并进行数学推导及证明,并用Matlab软件进行算法求解、数值仿真等.文章主要内容安排如下:第一章主要介绍了文章的研究背景、国内外研究现状和发展趋势及本文主要内容.第二章为预备知识,主要介绍本文证明过程中用到的一些定义、引理及相关性质,包括系统稳定性理论的基本概念和方法、切换信号设计的基本方法等.第三章主要研究了一类线性切换Lur’e时滞系统的绝对稳定性问题.韩庆龙首先研究了此类不含切换的特殊Lur’e时滞系统的绝对稳定性.对于单个系统(m=1)的研究,舍弃了交叉项与模型变换方法,通过选取一类合适的李雅普诺夫函数并适当对其导数进行定界,得出了单个Lur’e时滞系统(m=1)绝对稳定的充分条件.我们考虑了切换Lur’e时滞系统的绝对稳定性,即在多个子系统之间设计合适的切换规则,考察新的系统(m≥1)的稳定性.本章中,我们构造了合适的Lyapunov-Kraosvskii泛函,在前人的基础上,进一步探讨了Lyapunov-Kraosvskii泛函的定界方法,并利用ADT法设计合适的切换信号,使得子系统在切换之后仍然是稳定的.结果表明,本章的方法一方使得Lur’e时滞系统具有更好的稳定性,减少了已有稳定性结论的保守性并将其结论进行了拓展;另一方面扩大了系统的最大允许时滞上界.第四章针对不确定切换Lur’e常时滞系统绝对稳定性问题进行深入研究.一方面,对于单个不确定Lur’e常时滞系统(m=1)绝对稳定性的研究,韩庆龙、董越、吴敏、何勇、曾红兵等通过不同的方法相继进行了研究与改进,得到了单个不确定Lur’e常时滞系统绝对稳定性的充分条件;另一方面,对于切换时滞系统的稳定性研究,一般的方法为选取合适的李雅普诺夫函数,考虑其导数的上界,通过不同的方法对其进行界定,然后结合切换规则的设计,寻找切换时滞系统稳定的条件.值得说明的是,有时李雅普诺夫函数往往使得稳定性条件中相关正定对称矩阵的求解灵活度较低,求解过程较难.综上,本章中我们一方面将单个不确定Lur’e常时滞系统(m=1)拓展至多个不确定Lur’e常时滞系统(m≥1),研究不确定切换Lur’e常时滞系统绝对稳定性,致力于考虑切换规则对于系统性能的影响,提高系统的最大允许时滞上界;另一方面,寻找新的Lyapunov函数,使得LMIs的求解更为灵活,正定对称矩阵具有更高的弹性.首先把时滞区间分解成n个相等的子区间,然后结合二重积分,构造了一个合适的Lyapunov-Kraosvskii泛函,并借助积分不等式及MDADT法,得到了基于LMIs技术的绝对稳定性判据,改进了相关文献中的结论.特别地,在处理李雅普诺夫泛函导数界的时候,用积分不等式代替了一般的自由权矩阵理论.最后,利用数值算例进行了模拟仿真,表明本章的结论一方面拓宽了一般的不确定Lur’e常时滞系统的绝对稳定性,提高了系统的最大允许时滞上界,另一方面,与一般的研究切换时滞系统所选取的李雅普诺夫函数相比,我们的李雅普诺夫容易得到,求解的灵活性提高.第五章研究了含有不稳定子系统的切换Lur’e变时滞系统(m≥1)的绝对稳定性.对于此类单个子系统的Lur’e变时滞系统绝对稳定的研究由韩庆龙首次进行研究,通过选取李雅普诺夫函数给出了系统绝对稳定的充分条件.事实上,在现实生活中存在较多不稳定的Lur’e变时滞系统,对于此类系统,本章中我们通过将不稳定子系统与稳定子系统进行联合,研究新的系统(m≥1)的稳定性,一方面设计子系统间的切换规则使得系统绝对稳定,另一方面,切换规则的不同设计也使得稳定子系统的稳定性能得到提高.首先,构造了合适的李雅普诺夫函数,并通过新的引理对李雅普诺夫函数导数的上界进行适当的界定,减弱了条件的保守性.特别地,当变时滞是满足一定条件的可微函数时,得到更好的结果.接着,考虑不稳定子系统的作用并设计适当的切换信号,通过控制稳定子系统与不稳定子系统运行时间比例,达到整个系统的绝对稳定.最后,我们通过数值模拟仿真,给出了本章结论的可行性与优越性.第六章将第四章的模型进行了一般性的拓展,并在此基础上利用不同的方法进一步研究了不确定切换Lur’e变时滞系统绝对稳定性问题,得到了更为一般的结果.其中,时滞满足连续可微的条件,且下界为0,所涉及的不确定参数是范数有界的.在第四章中,在对李雅普诺夫函数的导数进行界定时,积分项的处理过程中直接忽略了某些有用的积分项,从而使得结果具有一定的保守性.鉴于此,本章中,我们构造了合适的Lyapunov-Kraosvskii泛函,并借助牛顿-莱布尼茨公式,通过引入新的自由权矩阵,对Lyapunov-Kraosvskii泛函的导数进行定界,在此过程中,并没有直接忽略任何积分项.其次,运用MDADT法设计切换信号,得到了基于LMI技术的时滞相关的绝对稳定性判据.自由权矩阵理论和MDADT法使得LMI解的可行域更宽,即所得稳定性条件保守性更小.数值仿真说明了所得结果减少了已有文献结果的保守性.第七章是本文的工作总结和未来工作设想.