航空发动机涡轮叶片温度及燃气浓度反演研究

来源 :中国科学院大学(中国科学院长春光学精密机械与物理研究所) | 被引量 : 0次 | 上传用户:bianmlu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着航空工业的发展,发动机推力、比重等性能不断提高,涡轮叶片运行时的温度也随之升高。由于长期工作在高温高压的极端环境中,导致涡轮叶片可靠工作寿命减少、材料强度降低。因此为保障航空发动机的安全运行,对发动机涡轮叶片温度精确测量的需求越来越迫切。传统的接触式高温计已无法适应如此严苛的工作环境,因此响应速度快、测温上限高、动态范围广的辐射测温技术在涡轮叶片温度测量领域得到了广泛关注,提高辐射测温精度对航空发动机稳定安全运行具有重要的意义。同时,在航空发动机运行时,燃烧室内高温燃气的状况直接影响涡轮叶片表面热辐射分布状态以及发动机的工作效率。因此通过测量燃烧产物中各气体组分的浓度百分比,调控燃料与空气的最佳混合比例,对实现燃油最佳燃烧效率,提高航空发动机的工作效率并减少污染物排放具有重要的意义。本论文针对航空发动机工作过程中涡轮叶片温度以及燃气浓度的测量需求,提出了基于谱窗移动的涡轮叶片温度测量算法和被动式高温燃气浓度反演算法,实现了涡轮叶片温度和高温燃气浓度的高精度反演。本论文的创新研究工作主要包括以下五个部分:1.开展了涡轮叶片光谱辐射测温相关理论研究,针对目前航空发动机涡轮叶片多光谱辐射测温中普遍存在的因发射率预测不准而严重影响温度反演的准确性问题,提出了一种基于窄带谱窗移动的涡轮叶片光谱测温算法。利用窄谱段内被测物体发射率随波长变化缓慢的特点,采用Mahalanobis距离定义两曲线间的相似距离描述两曲线的相关系数,在无需预设发射率模型的前提下实现了高温合金样品表面的温度场反演。2.开展了高温燃气分子吸收光谱理论研究,结合HITEMP光谱数据库和航空发动机燃烧产物对发动机不同工况下高温燃气光谱辐射吸收特性进行分析建模。通过对高温燃气非标况下线强计算、谱线线型选择及谱线增宽效应计算燃气光谱透过率分布,确定了不同燃烧产物的特征吸收峰。3.完成了高温合金样品光谱辐射测温实验系统设计和实验平台搭建。利用光栅光谱仪测量了DD6、DZ125、K77三种镍基高温合金样品的光谱发射率分布特点。使用窄带谱窗移动算法对上述高温合金样品进行表面温度场重构,通过与热电偶测量结果进行对比,验证了窄带谱窗移动测温算法对不同表面发射率样品温度测量精度。4.完成了航空发动机高温燃气浓度反演算法理论研究,提出了基于被动式航空发动机高温燃气浓度反演算法。通过对高温燃气光谱辐射传输过程进行建模分析,利用高温燃气光谱的选择吸收特性对背景辐射以及高温燃气辐射进行分离,同时对背景辐射光谱和高温燃气辐射光谱进行实时提取,求解高温燃气的光谱透过率分布,利用非线性最小二乘法对测量光谱透过率和理论光谱透过率拟合,实现气体浓度的反演。5.完成了高温气体浓度测量实验系统的设计和平台搭建,设计了三段式石英高温气体池,高精度配气系统。利用被动式燃气浓度反演算法对高温二氧化碳气体浓度进行测量,通过与配气系统设定浓度结果进行比较,验证了浓度反演算法的可行性和有效性。同时在高温燃气辐射传输模型的基础上,计算并分析了光谱测量系统的噪声等效辐射亮度和噪声等效柱浓度,评估了测量系统在不同测量条件下气体的浓度检测下限。
其他文献
新时期,新的化工企业安全生产管理措施开始推行,传统化工企业安全标准受到了极大的冲击,为了适应当下的安全要求,化工企业在获得化工产品带来收益的同时,必须兼顾探索新的安全生产管理办法。本文将就我国现阶段化工企业的安全现状分析影响化工企业安全隐患的因素并提出在新时期如何加强化工企业安全生产管理的有效措施。
沈阳地处辽河平原的中部,辽河水系的巨多河流滋养这里。它南连辽东半岛,北依长白山麓,这么肥美的土地,是人类生活的良好家园。11万年前的旧石器时代,沈阳地区就已有人类活动。7000多年前,中华民族的分支先民在此农耕渔猎繁衍生息,创造出新乐文化。让我们通过考古走进沈阳11万年的历史吧。
期刊
三十米望远镜(Thirty Meter Telescope,TMT)三镜系统在观测过程中工况十分复杂,且反射镜的径厚比大,对支撑结构的要求很高。同时三镜系统对质量和体积也有着极为苛刻的限制,进一步增大了支撑结构设计难度。本文针对三镜支撑结构进行了支撑方案优化、结构优化设计及分析、误差分析和原理样机搭建等方面的研究。首先,基于参数化模型和模拟退火优化算法实现了对椭圆形反射镜底支撑支撑点布局的全局寻优
随着航天科技的不断发展,空间机械臂将在轨组装、在轨制造和深空探测等领域发挥越来越大的作用。实现空间机械臂的自动控制及柔顺操作是空间机械臂不可缺少的一项功能。六维力传感器广泛的应用于机械臂末端,能够同时测量三个方向的力与力矩,实现机械臂的力与力矩反馈,是机械臂对末端机构进行精准力控制不可或缺的重要传感器。由于航天领域特殊的工作环境和对可靠度的严苛需求,普通商用的六维力传感器很难满足空间机械臂的应用要
光电角位移测量技术是一种将角位移转换为数字量的精密测量技术,已广泛应用于国防和工业控制领域中。随着航空航天技术的发展,对光电角位移测量装置提出了更高的要求,不仅要减小外径尺寸和重量,更要提高装置的分辨力和精度。本文研究的图像式角位移测量技术,通过光学成像技术缩小了角位移测量装置的体积;采用数字图像处理技术,提高了角位移测量装置的分辨力和精度,对实现高精度高分辨力的小型角位移测量具有重要意义。在参考
对于反射镜式光学遥感相机,光学系统的主反射镜往往是光学系统中口径最大,技术最难、周期最长,成本最高的一块非球面反射镜,所以在研制和探索非球面反射镜的新材料、新工艺的过程中,高精度、低成本、性能优良、能够快速制造的材料是反射镜发展的必然趋势。单晶硅具有较小的密度和线胀系数、极高的均质性、高导热性等优异的力学及热学性能,同时单晶硅非球面反射镜的加工周期和成本相对其他常用的陶瓷、玻璃和金属反射镜而言都更
光纤激光器以其优质的光束质量、良好的散热、易于小型化集成等优点,在激光加工、医疗和国防等各个领域都具有非常重要的应用前景。特别是波长位于3-5μm大气透射窗口的中红外光纤激光,更是受到红外对抗、气体探测和生物医疗等领域的广泛关注。然而,传统制作光纤采用的是石英材料,这种材料普遍具有较大的声子能量,因此在波长大于2.2μm时传输损耗较大。而氟化物材料具有较低的声子能量,是实现中红外光纤激光器常用的光
激光通信技术是一种以激光为载波的通信方式,是航空航天及国防军工领域的关键通信技术,并正逐步融入民用领域。在大气环境中应用激光通信技术时,受大气湍流干扰,接收端空间光信号到单模光纤的耦合效率及稳定性显著下降,严重影响了通信质量。高效、稳定的光纤耦合效率是实现高速大气激光通信的前提和保障,空间光到单模光纤耦合效率问题已成为制约大气激光通信技术亟待解决的技术瓶颈。自适应光学技术是目前解决大气湍流对光信号
可调谐分布反馈半导体激光器具有体积小、质量轻、便于携带、易集成、波长可调谐等优点,在量子通信,大数据网络,生物医疗,生物探测,激光国防等领域都作为核心光源使用。在传统的法布里-珀罗腔的半导体激光器结构基础上,引入光栅结构来形成周期性的微扰,导致对半导体激光器内部进行折射率或者增益的调制,实现输出光的模式调制。折射率和增益调制对应了折射率耦合型以及增益耦合型分布反馈(DFB)半导体激光器。折射率耦合