【摘 要】
:
石油平台长期作业于恶劣的海况环境中,在甲板片上安装的大量油气工艺设备以及管道线路容易出现损坏导致油气泄露,进而引发火灾以及爆炸事故,造成严重的经济损失以及人员伤亡事故。基于上述特点,电器间作为石油平台电气设备的控制中心,在石油开采加工过程中需要对整体生产过程进行控制以及监控,在发生爆炸事故时,必须能够保证内部设备的正常运转以及电器间室内工作人员的生命健康。因此,对石油平台中油气爆炸载荷特性以及电器
论文部分内容阅读
石油平台长期作业于恶劣的海况环境中,在甲板片上安装的大量油气工艺设备以及管道线路容易出现损坏导致油气泄露,进而引发火灾以及爆炸事故,造成严重的经济损失以及人员伤亡事故。基于上述特点,电器间作为石油平台电气设备的控制中心,在石油开采加工过程中需要对整体生产过程进行控制以及监控,在发生爆炸事故时,必须能够保证内部设备的正常运转以及电器间室内工作人员的生命健康。因此,对石油平台中油气爆炸载荷特性以及电器间抗爆性能进行研究已经变成了一项十分重要的任务。基于上述研究目的,本文首先对油气爆炸载荷进行分析,从油气爆炸起因、油气爆炸物理机制以及冲击波特性等方面对油气爆炸载荷特性进行深入研究。分析油气泄露数值仿真模型,并对石油平台上部工艺模块油气泄露过程以及油气爆炸过程进行仿真分析,研究油气泄露、扩散以及爆炸的整体过程。在此基础之上分析点火位置、等效气体云体积对于油气爆炸载荷及峰值超压的影响作用。分析石油平台电器间设计原则以及传力途径,并使用Solid Works软件建立电器间三维模型。借助Hyper Mesh软件对电器间数值模型进行前处理,通过ANSYS/LS-DYNA软件对电器间在油气爆炸载荷作用下的整体动力响应过程进行分析。在爆炸仿真过程中,使用爆炸冲击波超压曲线作为爆炸载荷施加到电器间外墙上,分析电器间整体以及各构件在爆炸载荷作用下的位移响应、应力响应以及能量响应。最后,依据电器间在爆炸载荷作用下的动力响应特性,分析电器间外墙厚度、内部竖梁尺寸以及支撑形式等参数对电器间抗爆性能的影响程度。通过分析对比可知外墙厚度以及支撑形式对电器间抗爆性能影响较大,竖梁尺寸对电器间抗爆性能影响有限,并以此为基础对电器间进行结构加强,为石油平台电器间抗爆防护设计提供参考。
其他文献
与传统钛合金相比,钛基复合材料具有高强度和良好的高温力学性能等优点,但钛基复合材料还存在界面开裂和界面脱粘等问题,对其力学性能产生不利影响。并且由于实验中界面结构的复杂性,界面微观结构、界面结合和力学性能之间的关系尚不清楚。考虑到SiC和TiB是钛基复合材料中应用最广泛的增强相,本工作利用第一性原理计算系统研究基体掺杂的SiC/Ti体系和增强相掺杂TiB/Ti体系的界面结合、理论强度和弹性性能,结
金刚石具有高硬度,高耐磨性,高导热等特征,在非铁合金加工,石油天然气、矿业开采领域具有很大的应用需求。在现代工业中发挥着越来越重要的作用。本课题采用高温高压法分别制备了以Ti-B基和Ti-Si基结合剂的中介结合型聚晶金刚石,其中Ti-Si基分为Ti-Si、TiC-Si和Ti3SiC2-Si三种结合剂。探究了烧结温度、结合剂体系及含量对聚晶金刚石性能的影响。研究发现两体系的聚晶金刚石的致密度、硬度、
碳纤维网格以其优异的力学性能及独特的物理属性,逐渐受到相关研究者的广泛关注。由于具有超高的抗拉强度和弹性模量,优异的耐腐蚀性能及双向受力等突出优势,使其成为复合材料理想的增强相而广泛应用于水泥基复合材料工程修复和加固领域。但是,碳纤维网格增强水泥基复合材料(CMCCs)仍然存在碳纤维网格与水泥基界面粘结强度低等突出问题。因此,探索新的界面改性的方式以突破现有技术对于获得具备优良综合力学性能的水泥基
海上固定平台建造成本高、运营风险大,开展完整性管理评价以不断提高其完整性管理水平,可以有效降低成本和运营风险,对提高企业的经济效益和抗风险能力具有重要意义。本文首先在通过文献梳理国内外研究现状的基础上提出了完整性管理初始评价指标,通过专家访谈对初始评价指标进行了补充、细化和聚类,得到海上固定平台完整性管理的初始评价指标体系,通过调查问卷的方式对各评价指标的重要性进行分析,根据各指标重要程度确定了最
近年来,随着石油开采目标逐渐向深海转移,石油模块逐渐朝着重量重、尺寸大的方向发展。石油模块一般是在码头上进行建造,采用合适的移位方式移位到驳船上。当驳船的高度高于码头,常用的滑移装船与轴线车移位的方式不能使用,只能采用吊装方式。石油模块的吊装需借助于大型的起重设备,环轨式起重机作为一种新型的起重设备,因具有起重量大,同时兼备超大的起重力矩的优点,在吊装领域发挥着越来越重要的作用。本文主要针对环轨式
浮托安装有安装吨位大、陆建完整、连接调试量少等特点,应用广泛,但是受限于浮托安装环境要求较高,导致安装时间窗口较窄。基于此背景下,本文采用在浮拖船和上部待安装模块之间搭建一种升沉补偿装置,利用主动控制装置液压缸伸缩对上部待安装模块的运动进行补偿。主要针对该装置液压控制系统进行研究,目的为提高升沉补偿装置液压控制系统的精度,保证上部平台的稳定性。本文研究内容如下:根据升沉补偿平台工作环境,对浮拖船受
大型结构物一般是在陆地建造好后转移到码头前沿,再转移到驳船上运输到指定的海域安装,由于地面不平从建造场地转移到码头前沿的过程会出现虚腿现象,导致某些桩腿的受力过大压溃码头和结构物的受力不均衡出现倾覆现象,造成财产损失和人员伤亡。传统的滑移过程采用桩腿进行支撑,无法调节桩腿的受力和结构物的水平状态,所以采用液压缸取代桩腿进行支撑。由于普通的液压缸无法承受滑移过程的横向载荷,所以需要先研究能承受此横向
液化天然气(LNG)作为一种清洁、高效的能源,在能源利用的环保性和经济性等方面具有明显优势,我国LNG的进口量和需求量快速增长,建成的LNG接收站数量逐年增长。大型LNG储罐作为LNG接收站的核心设备,也是储存LNG的主要设备,研究大型LNG储罐对于LNG的运输储存具有重要意义。LNG储存在罐内时容易因老化或充注新LNG而出现蒸发、分层、翻滚等问题,严重影响LNG储罐的安全工作,因此LNG的安全储
近年来,随着我国天然气西气东输等重大工程的发展,天然气管道泄漏等问题日益严峻,这些事故工况对人身安全和环境都造成了严重影响。在天然气管道长距离运输过程中,工作人员对系统装置操作不当和一些不合理的管道系统设计在一定程度上降低了管道输流能力,还会放大内部气体对管道的压力振荡,甚至会造成管道等基础设施的冲击破坏等风险。为了充分提高管道输流能力,解决管道输气过程中泄漏、冲击等问题,我们要加大对管道输气系统