【摘 要】
:
随着电子科学技术的飞速发展,电磁波辐射污染越来越严重,为了解决电磁污染问题,电磁波吸收材料的研发引起了学者的格外关注。稀土锰氧化物有介电损耗也有磁损耗以及稀土元素具有特殊的4f电子轨道性质,随着研究的不断深入,稀土类锰氧化物在吸波方面发挥着越来越重要的作用。本论文使用溶胶凝胶法制备了REMnO3(RE=La、Pr、Nd)三种稀土锰氧化物,通过一系列表征和性能测试,确定了以PrMnO3为基体,并研究
论文部分内容阅读
随着电子科学技术的飞速发展,电磁波辐射污染越来越严重,为了解决电磁污染问题,电磁波吸收材料的研发引起了学者的格外关注。稀土锰氧化物有介电损耗也有磁损耗以及稀土元素具有特殊的4f电子轨道性质,随着研究的不断深入,稀土类锰氧化物在吸波方面发挥着越来越重要的作用。本论文使用溶胶凝胶法制备了REMnO3(RE=La、Pr、Nd)三种稀土锰氧化物,通过一系列表征和性能测试,确定了以PrMnO3为基体,并研究煅烧温度、样品与石蜡的质量比等因素对PrMnO3吸波性能的影响,从而确定了体系最佳制备工艺和最佳的样品石蜡质量比。随后探索了Pr3+被不同含量的Sr2+,Ba2+,La3+替代对PrMnO3微观结构,磁性能以及微波吸收性能的影响。首先通过溶胶凝胶法制备了La MnO3、PrMnO3、Nd MnO3单相稀土锰氧化物。使用XRD、SEM、XPS、BET、VSM、VNA等设备对样品结构表征和性能测试。三种稀土锰氧化物粉末的形貌具有一定的相似性,粉末大致呈现球形或椭球形。在d=3.2mm下,PrMnO3具有最小的反射损耗值(RLmin)-35.72 dB(吸收率为99.97%),此时对应的有效吸收带宽(RL<10 dB)是5.04 GHz。探究测试时待测样PrMnO3与石蜡复合的质量比对吸波性能的影响,结果表明质量分数是40wt%的样品在d=3.3 mm厚度下取得最小的反射损耗值-30.04 dB,具有最佳的吸波性能。随着煅烧温度的增加,PrMnO3化合物的粒径逐渐增大,ε’和ε’’的值随温度和频率的升高整体上逐渐减小。样品厚度d=3.4 mm,煅烧温度是800℃时PrMnO3具有最佳的吸波性能,达-38.18 dB,对应的频率是10.00 GHz,属于X波段。在室温2T场强下,Pr1-xSrxMnO3和Pr1-xBaxMnO3磁化曲线没有达到饱和,近似直线,并且具有较低的矫顽力。当Sr2+的掺杂量是x=0.05的时候,Pr0.95Sr0.05MnO3样品的有效带宽提高到6.96 GHz,当掺杂量增加到x=0.1时,最小RL达到-50.21 dB,吸收峰频率是12.08 GHz,而对应的吸波层厚度仅为2.5 mm,Pr0.9Sr0.1MnO3粉末显示出即使在较低厚度下仍然具有优异的微波吸收能力。当d=5.5 mm时,Pr0.94Ba0.06MnO3在f=5.04 GHz(C波段)取得RLmin为-18.97 dB。这说明Pr0.94Ba0.06MnO3在低频段C波段也具有较好的微波吸收能力。Pr1-xLaxMnO3随着La3+掺杂量的增加X射线衍射峰向低角度偏移,Pr0.9La0.1MnO3在9.84 GHz取得最小反射损耗-53.96 dB,而此时对应的匹配厚度是3.4 mm。从宽频效应来说,当掺杂量是x=0.1时取得最大频宽4.8 GHz。这说明Pr0.9La0.1MnO3材料不仅具有良好的吸收性能,而且拥有优异的宽频效应。
其他文献
头颈部癌症原发病灶位置多且致死率高,在全身肿瘤中排名居于前列。开展对原发肿瘤患者的生存率预测,可以识别潜在高危患者以便尽早确定诊疗措施,防止疾病恶化。近年来,卷积神经网络在图像处理与分析领域表现出巨大的优势,被广泛应用于分类、检测、分割等领域。因此,本文基于卷积神经网络方法,根据治疗前头颈癌患者的医学图像进行生存率分类预测,旨在为临床治疗提供参考,促进个体化精确医疗的发展。迁移学习方法通过计算源域
各类智能移动应用的发展促使用户难以在海量数据中获取与自己精准匹配的信息,推荐系统可以智能且快速地为用户提供个性化服务,有效地解决上述信息过载问题。然而无论是在现实场景中还是虚拟社区中,用户倾向于以组的形式参与活动,例如,一家人观看电影或与朋友们去旅游。因此,为一组用户提供准确的推荐服务,即组推荐,成为了一种新的服务模式。组推荐不仅需要兼顾组中每个用户的偏好差异,还要考虑组决策受到组内用户间交互行为
糖尿病视网膜病变(Diabetic Retinopathy,DR)作为一种微血管病变,往往是由糖尿病引起的,在病变初期症状不明显,病情恶化迅速,轻则造成眼部视力下降,重则致盲,其临床表现集中在眼底血管病变。目前在临床上,专业眼科医生依靠自身经验,从眼底视网膜图像中找到潜在的患病区域,进行分析、筛查,由此可以对患者的病情进行评估、诊断。但是,一方面由于过度的依靠眼科医生的临床经验,诊断耗时较长,容易
无线传感器网络由于节点规模大、部署简易等优势,成为21世纪对现代科技发展有着巨大影响的技术之一。随着无线能量传输技术的快速发展,关于无线可充电传感器网络的研究逐渐拉开序幕,这一技术在一定程度上缓解了无线传感器网络能量受限带来的局限性,具有很大的发展潜力。可以将无线传感器网络分类为平面型和层次型,在平面型网络中每个节点将数据通过网络路由发送到基站,而层次型是一种将节点组织成簇,簇头节点将簇内所有的数
石墨烯量子点(Graphene Quantum Dots,GQDs)具有一系列的优点并且在光电器件、光催化、生物成像、细胞成像、药物输运和荧光探针等方面被广泛研究和应用,而影响GQDs的性能包括多方面。其中一个改变其性能的重要方法就是通过对GQDs掺杂或者对其表面进行修饰。对于氮掺杂型的GQDs已被广泛的研究,GQDs通过掺氮后其很多性能都发生了重要的改变,尤其是能带隙得到很大的改善。其中关于硼、
钙钛矿型化合物由于其新颖的物理性能和在传感器、催化剂、数据存储、磁电耦合器等方面的应用,成为近些年的研究热点。本文以稀土铬氧化物RCr O3(R=Ce,Pr,Tb,Tm,Lu)为研究对象,对体系的晶体结构、磁性能和(磁)介电性能进行了详细分析,主要研究内容及结论如下:本文采用固相法对Tm Cr O3和Lu Cr O3进行制备,利用溶胶凝胶法制备Pr Cr O3和Tb Cr O3样品,通过燃烧合成工
近年来,伴随着能源以及智能设备需求量的不断增加,相应的对设备所需材料的性能要求也日益提升,这就对传统的铸造工艺提出了挑战,该背景下,定向凝固技术逐渐引起了人们的关注。此外,随着航空航天的发展,对高温合金的性能要求也越来越高,Ti基和Co基合金因具有很好的耐高温,耐腐蚀,磁性性能而被广泛使用到航空航天,电子工业等行业,向上述二者中添加适量Nb合金还可以形成具有特殊用途的三元Nb-Ti-Co合金,例如
铌(Nb)系合金由于兼具良好的高温强度和突出的低温塑性,近年来发展迅速。其中Nb-Ti-Co三元合金作为一种新型的功能材料在氢分离领域、电磁领域和生物医学领域有着广泛的应用,使其成为各国学者的研究热点。目前对铌系二元合金凝固理论的研究已经比较成熟,但相对完整的多元合金凝固理论体系还尚未建立,因此,深入研究多元合金的凝固理论将是未来凝固学的主要方向之一。另外,有学者在氢分离研究中发现Nb-Ti-Co
随着第五代移动通信技术的到来,快速发展的物联网技术逐步深入应用于生活中,远程数据监控平台的研究和应用成为物联网领域的热点。然而应用于无人无源场景的数据监控平台面临着数据采集终端功耗大、多设备数据管理不全面的问题,因此设计一种功耗低、便于管理的数据监控平台具有一定的现实意义。本课题通过对关键器件选型降低了硬件功耗、对基于DPM算法设计降低了终端运行功耗以及通过对云平台的开发方便了对终端采集数据的管理
太赫兹波由于光子能量低、穿透力强、频带范围宽等特点,在宽带无线通信、生物传感、安全检查和光谱成像等领域有巨大应用前景。在太赫兹通信、成像、传感检测等应用领域都需要对太赫兹波幅值与偏振进行调控,传统自然材料由于尺寸限制,对太赫兹波幅值与偏振的调控能力有限。超材料是一种周期性亚波长结构组成的人工电磁材料,基于超材料的太赫兹器件设计灵活、体积小、易于集成,已经成为太赫兹波调控器件研究重点之一。二氧化钒是