【摘 要】
:
石墨烯是sp~2杂化的碳原子按蜂巢状紧密排列形成的二维材料。石墨烯具有优异的电学、光电、力学等性能,可广泛应用于微电子、光电子器件、航空等领域。石墨烯薄膜常用的制备方法是化学气相沉积法(CVD)。铜基底是CVD制备石墨烯最常用的基底,它不仅拥有较好的表面催化能力,还有非常低的碳溶解度。现有的商用铜基底中,铁这种杂质元素是很难去避免的。因此,搞清铜基底上铁杂质元素对石墨烯生长的影响规律和机制进而提出
论文部分内容阅读
石墨烯是sp~2杂化的碳原子按蜂巢状紧密排列形成的二维材料。石墨烯具有优异的电学、光电、力学等性能,可广泛应用于微电子、光电子器件、航空等领域。石墨烯薄膜常用的制备方法是化学气相沉积法(CVD)。铜基底是CVD制备石墨烯最常用的基底,它不仅拥有较好的表面催化能力,还有非常低的碳溶解度。现有的商用铜基底中,铁这种杂质元素是很难去避免的。因此,搞清铜基底上铁杂质元素对石墨烯生长的影响规律和机制进而提出解决方案非常有必要。针对这一问题,本论文以铜基底上铁杂质元素作为研究对象,重点研究铜基底上铁元素引入方式和引入的铁元素含量对石墨烯形核和生长的影响规律及机理,并研究了退火对铜基底引入铁元素含量及石墨烯质量的影响规律。主要研究内容与结论如下:(1)采用溶液滴定以及电化学沉积分别对铜基底进行铁杂质元素的引入,并研究了两种不同引入方式对石墨烯生长的影响规律。研究表明:铁元素的引入会抑制石墨烯晶体生长,增加石墨烯成核密度、降低石墨烯晶畴尺寸及质量,铁元素引入区域石墨烯生长不完全、晶体破损;滴定引入铁元素相较于电镀引入的浓度更低但分布较不均匀,石墨烯缺陷密度分布与铁元素呈现依赖关系;电镀引入铁元素分布均匀但铜基底表面被铁颗粒覆盖,使得石墨烯生长质量及完整度较差。(2)研究了退火扩散对铜基底表面引入的铁元素含量及对石墨烯生长质量的影响规律。研究表明:对电镀方式引入铁元素的铜基底进行长时间的退火扩散处理,能有效降低表面铁杂质元素的含量,并改善铜基底表面形貌粗糙度,从而有效改善石墨烯薄膜的生长质量。(3)研究了电镀铜基底表面铁杂质含量对石墨烯形核和生长的影响规律。研究表明:随着引入铁元素含量的增加,所制备的石墨烯成核密度增加,缺陷密度变大,薄膜破损程度越大,石墨烯整体质量下降;由于铁元素对石墨烯生长的抑制作用,铁元素引入含量增加,导致石墨烯晶体内部缺陷增多,在铁元素含量较高的区域石墨烯甚至停止生长从而导致石墨烯晶体破损。(4)研究了铁杂质元素对石墨烯形核和生长机制的影响规律。研究表明,在石墨烯形核阶段,由于铁杂质元素增加了异质形核点,石墨烯形核密度增加;在石墨烯生长阶段,铁元素浓度较高区域会抑制石墨烯生长,或对石墨烯产生一定的刻蚀作用。
其他文献
氮化镓(GaN)因具有宽禁带、高临界击穿电场以及高电子饱和速度等特点被学术界以及产业界广泛地研究,基于GaN材料新型功率HEMT器件也逐渐被市场所接纳。然而,这并不代表GaN材料的全部潜力已经被开发出来——目前大多数的GaN功率HEMT仍只能满足650 V及以下的应用需求,仅有少数国外器件制造商推出了他们的千伏级产品。由于传统的GaN基HEMT器件结构在实现更高击穿电压(例如:1800 V)上的缺
石墨烯因其独特的电子和结构特性,近年来引起了国际上相关领域学者广泛的关注和研究。这种单原子层厚的二维平面晶体材料表现出一系列优异性能:如室温下高电子迁移率、高热导率和光学透过率、化学惰性等。随着集成电路飞速发展以及摩尔定律极限逼近,石墨烯有望开启“后硅基”时代。石墨烯场效应管是在石墨烯的基础上,将石墨烯作为沟道导电材料的一种新型场效应管器件,其结构和性能不同于传统场效应管。本文在现有石墨烯场效应管
太赫兹(Terahertz,THz)科学技术作为衔接经典电磁理论与光学理论的桥梁,跟微波比,具有更高的频率,更短的波长,因此带宽更宽。跟光比,具有更低的光子能量,因此不会破坏物质。太赫兹科学与技术作为有远大应用前景的前沿研究科目,可应用在卫星通信、高分辨率医学成像、电子对抗,雷达等多个领域和方面,具有广泛的应用价值。太赫兹辐射源是发展太赫兹科学的关键。而目前来看,当下的太赫兹辐射源面临输出功率小,
随着集成电路的特征尺寸的降低,更高的集成密度带来了更高的功率密度,由于芯片散热的限制,多核众核微处理器终于进入了暗硅的时代。暗硅时代有两个突出的问题,一个是如何在安全阈值温度下实现性能的最大化,还有一个是如何优化多核芯片的能效比。多核芯片的能效比优化问题的难点在于,随着集成电路特征尺寸的下降,静态功率的比重在总功率中的比重逐渐增加,因此以往忽略静态功率或者以常数去考虑静态功率的做法便行不通了。而且
随着电力电子技术的发展,人们要求不断提高电能的转换效率。绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)作为半导体功率器件的关键元件,击穿电压BV、导通压降Von、关断损耗Eoff、d V/dt可控性、开启损耗Eon、短路耐受时间tsc等关键电学性能参数之间在器件设计时往往需要折中考虑。为了可以优化导通压降和关断损耗之间的矛盾关系,器件往往需要更加
太赫兹通信技术作为实现未来空间高速传输的关键技术,具有高频率、窄波束、抗干扰性强等优点。太赫兹通信技术将广泛应用于军事国防和民用通信领域。如何实现高速率远距离的太赫兹通信系统成为国内外研究的热点问题。太赫兹调制器作为太赫兹直接调制无线通信系统的核心组成器件之一,现阶段面临结构复杂、调制速率低等问题。本文将鳍线与人工微结构加载肖特基二极管结合的方式设计太赫兹调制器,并对设计的调制器在太赫兹通信系统中
回旋行波管是一种重要的高功率毫米波源,在雷达、通信系统和工农业生产等各领域中应用前景广阔。在传统微波和毫米波低端频段,TE01模回旋行波管的研究和应用较为普遍。但随着工作频率的不断提高,传统的TE01模回旋行波管难以满足高功率输出的需求。在这一背景下,以高阶模式作为工作模式的回旋行波管设计方案被相继提出,例如,以圆波导TE02模为工作模式的二次谐波回旋行波管放大器方案。与圆波导TE01模的回旋行波
第五代通信系统5G(5th-Generation)具有高速度、低时延、高可靠和大容量的特点,未来将广泛应用于各行各业中,推进军事、通信、交通、医疗和教育等行业往更加智能化的方向发展。与之相对应的,5G的发展对射频前端也提出了挑战。作为射频前端的主要部分之一,功率放大器,同时也是射频前端主要耗能的模块。对毫米波功率放大器的效率优化设计对节约能源有很实际的经济意义。另外,在工艺方面,硅基毫米波功率放大
太赫兹波因其独特的频谱特性而具有广阔的应用前景,在安全检测、医疗诊断、国防安全以及大容量通信等领域都展现出了很强的潜力。在太赫兹波技术的相关应用中,太赫兹探测器是太赫兹应用实现的关键一环。近年来,太赫兹场效应管探测器(Tera FET detector,又称等离子体波探测器)由于能够在室温下工作、小型化的优势得到了科研人员的重点关注。其中,硅基CMOS场效应管作为太赫兹场效应管探测器中的一种,凭借
在真空电子器件领域,行波管经过几十年的发展,已经被广泛的应用到国防科技、卫星通信等各个领域。其大功率、高效率、可靠性高等特点成为了其与固态器件竞争的重要优势。随着快速发展的第五代移动通信系统的逐渐普及,同时各领域在低频范围内的频谱资源分配愈发紧张,将毫米波技术应用到现代通信系统中可谓大势所趋,也为行波管这一具有悠久发展历史的器件注入了新的生命力。但是,从行波管注波互作用理论出发不难发现,此类器件是