基于红外热像法对有色金属材料疲劳性能的研究

来源 :北京有色金属研究总院 | 被引量 : 0次 | 上传用户:cainong_111
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
红外热像法是一种基于能量耗散理论的疲劳测试新方法。这种方法具有快速、无损、实时等诸多优点,与传统疲劳测试方法相比具有极大的优势。同时,红外热像法从热力学角度出发,研究能量耗散与材料微观组织演化的关系,为探究金属材料疲劳断裂机理提供了新的手段,在工程设计与应用及新材料研究开发中均有着广阔的应用前景。本文探究了外部热源、热弹性、热传导、固有耗散对红外热像法实验结果的影响,发现固有耗散源是引起试样表面温度变化的主要因素,热弹性源与热传导源对温度变化影响较小,而外部热源引起的温度噪声会对测量结果产生影响,需要采取屏蔽措施加以抑制。目前广泛使用的Luong法在测定疲劳极限时,并未规定如何准确确定温升拐点,本文利用红外热像法获取工业纯钛疲劳循环应力加载过程中试样表面温度变化,基于固有耗散理论和疲劳损伤机理,提出以弹性极限作为热像数据分界限进行Luong法线性拟合的新方法,在唯一测定温升拐点的基础上快速准确预测了 TA1工业纯钛的疲劳极限。结合红外热像法在铝合金疲劳极限测定中的应用,对该方法在材料中的适用范围进行了讨论。为对本文提出的优化Luong法机理进行研究,通过数字图像相关技术(Digital Image Correlation,以下简称DIC)与定位跟踪观察实验,对疲劳循环应力加载过程中应变与微观组织演化进行了研究,揭示了材料发生弹塑性转变时微观组织演化与固有耗散机制转变的对应关系。利用Risitano提出的红外热像拉伸实验获取疲劳极限,并与升降法和优化Luong法测定结果进行了比较。
其他文献
Al-Zn-Mg-Cu合金因比强度高、断裂韧性及耐应力腐蚀性能较好等优点而被广泛应用于航空航天工业。本论文基于7A56铝合金锻件时效热处理工艺与热装配工艺进行适配的应用背景,在系统研究7A56铝合金锻件时效析出行为的基础上,采用热暴露实验模拟热装配过程,研究了典型时效态合金和轻度时效预处理合金在热暴露过程中微观组织及性能变化规律,为后续应用中7A56铝合金锻件预处理工艺的选择和优化提供理论支撑和实
电子元器件向着高集成化、高功率密度的方向发展,热管理成为影响其性能和寿命的关键因素之一,粉末冶金纯铜材料具备导热率高、孔隙可控、近净成形、结构均匀等优势,是应用广泛的热管理材料之一。孔隙是粉末冶金材料的固有属性,不同类型的粉末冶金纯铜导热材料在传热方式、性能和孔隙结构等方面差别较大。目前,关于粉末冶金纯铜材料的孔隙控制及其对材料性能影响的研究不够全面。本文以纯铜粉为原料,采用松装烧结和压制烧结工艺
本文利用平衡合金法,通过X射线粉末衍射,扫描电子显微镜及能谱分析等方法研究了 Zr-Fe-Si体系富锆角580℃和800℃下的相平衡关系,得到了 Zr-Fe-Si体系富锆角的相图和相关的热力学模型参数,最后采用优化过的锆合金数据库,计算了Zr-1Sn-0.3Nb-0.3Fe-0.001Si合金的工艺相图,探究了不同合金成分及温度对锆合金相结构的影响,提出了对未来锆合金成分和工艺优化的几点建议。得到
超晶格La-Y-Ni基储氢合金克服了 LaNi5基合金容量低和La-Mg-Ni基储氢合金制备困难的缺陷,得到了广泛的研究。La-Y-Ni基合金制备工艺简单,放电容量高,但仍存在在碱性电解液中易腐蚀,倍率性能有待提高的问题。本文采用磁悬浮感应熔炼法制备了(LaSmY)(NiMnAl)3.5合金,分别选取石油沥青、蔗糖、葡萄糖、壳聚糖为碳源,通过低温烧结,制备得到碳包覆合金样品,并与机械混合碳粉制备的
电阻焊电极材料在工作时要承受高温和高压共同作用,端面直接接触高温焊点表面,工作条件恶劣,容易发生变形、粘附和磨损。电极材料的性能直接影响电阻焊电极的使用寿命,影响自动化焊接设备的生产效率。为了获得性能良好的电阻焊电极材料,解决电阻焊电极使用寿命短的问题,需深入研究在纳米Al2O3弥散强化铜合金中引入稀土Y元素制备新型复合材料的导电率、软化温度和摩擦磨损等性能并探讨其摩擦磨损失效机制。研制具有更长使
钨具有高熔点、高抗电迁移性、高热稳定性等优点,以薄膜的形式应用于半导体器件中,特别是先进半导体存储芯片制造中。钨溅射靶材是实现制备低电阻率钨薄膜的关键材料,其性能在一定程度上取决于原料高纯钨粉的性质。高纯钨溅射靶材要求钨粉具有纯度高(5N)、粒度低(纳米级)的性能,因此本文以高纯仲钨酸铵作为原料,设计了酸沉淀法和两段式氢还原法联合的工艺来制备高纯纳米级钨粉,主要研究内容包括以下两个方面:(1)将浓
与传统镁合金相比,稀土镁合金以其高强度、高耐蚀性等优点受到青睐。研究表明,在稀土镁合金中引入LPSO相,有助于稀土镁合金塑性加工性能的提升。针对含有LPSO相的稀土镁合金,已有很多学者做出了研究,但是在镁合金制备加工过程中各个状态下LPSO相的结构演变仍存在争论,其塑性变形机制也尚不明确。本文选取Mg-7Gd-5Y-1Nd-xZn-0.5Zr(x=1,1.5,2)合金(1Zn、1.5Zn、2Zn合
现阶段航空器结构件对钛合金高强高韧力学性能的要求越来越严苛,所以高强高韧钛合金的相关研究一直备受人们的关注。而本文的研究对象为一种新型的亚稳β钛合金,目前对其研究不足,包括其相变过程的研究以及大棒材的热处理,组织、性能关系等,因此对其进一步的研究就显得尤为重要。本文系统研究了该合金在β相区固溶时的晶粒长大动力学,等温时效过程中的组织演变规律、时效硬化特性及相变动力学,并对单相区和两相区固溶时效后的
随着常规油气资源的不断开发与耗竭,页岩油气等非常规能源将成为未来能源的重要接替者。水平井分段压裂技术是国内外开采这类油气资源较成熟的技术,桥塞是该技术中的重要组成部分,可溶性桥塞由于其可自行溶解、增加工作效率等优势已成为现在的研究热点。新型可溶性桥塞除了胀管为可溶性橡胶材料外,其余均为镁合金制成;可溶性橡胶材料不仅溶解较慢,容易造成二次堵塞,而且胀管在桥塞工作过程中容易发生回弹而封隔失效;如果用镁
在镁中添加Gd、Y等稀土元素后,可以获得优异的力学性能以及较好的耐腐蚀特性的镁合金,是目前航空航天、军工等领域的重要轻量化材料。传统稀土镁合金在强度提高的同时,塑性相对较低,很难制备出军工领域重要的大轴径比锥筒零部件。研究发现Zn元素的加入可以在稀土镁合金中形成长周期有序堆垛结构相,塑性加工能力得到改善,本身塑韧性也会显著提升。目前关于该类稀土镁合金塑性成形研究相对有限,为了能够进一步扩大稀土镁合