面向光电协同频谱分析系统的信号参数测量方法研究

来源 :上海交通大学 | 被引量 : 0次 | 上传用户:j2eeweb
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
信号参数测量是电子侦察领域中的一个重要课题。随着信号频率的提高和信号带宽的增大,如何快速有效地对高频率,大带宽信号进行参数测量成为一个重要的问题。传统信号参数测量方法基于数字信号处理。但对于信号逐渐趋向高频率、高密度、大带宽的特性,数字信号处理的处理能力受到现有的高速采样的能力和数字处理器的处理能力的限制,无法完全满足未来的发展趋势。本文采用的参数测量是基于光电协同技术的处理方式,在光域对信号进行频域计算后利用数字处理方式进行信号的参数测量。光电协同技术结合了微波光子学高速运算和数字信号处理灵活控制的优势,能够对高频率、大带宽信号进行快速准确的参数测量。本文主要讨论的是在基于具有光学傅里叶变换功能的系统基础上进行的参数测量算法。与传统的信号处理方式不同的是,文中设计的算法中的傅里叶变换均是由光学系统处理得到。由于光学系统在计算上高速运行、实时处理的特点,本文针对光学系统处理后的结果开展信号参数测量技术的研究。论文的主要工作和创新点如下:(1)利用自相关法,短时傅里叶变换法,插值法等瞬时测频方法估计信号的瞬时频率,从而估计三类信号的频率参数。针对正弦信号,提出了一种新的插值算法,该算法在较低信噪比下即接近CRLB。(2)针对线性调频信号频谱的宽带特性,提出了两种基于MDCFT的线性调频信号参数估计算法,提高了算法测量精度。(3)结合光域二维傅里叶变换的特点,通过光域变换结果得到信号的时频变换结果。并借助PCA-SVM方法,通过时频图像进行信号类型识别和时间参数的测量。
其他文献
近年来,无线智能终端的普及,各类多媒体业务的涌现,使得移动数据流量呈指数级增长。这给通信网络造成了巨大的压力和挑战。基于无线融合网络的数据卸载技术是一种有效的解决方法。然而,传统无线融合网中采用集中式缓存机制,效率还有待进一步提高。为此,本文在无线融合网中引入分布式缓存技术,重点研究基于强化学习的分布式缓存技术。首先,针对分布式两跳缓存网络的情况,研究了在路由节点受缓存空间和带宽的约束条件下,如何
现如今,智能语音设备在普通家庭中逐渐普及,智能音箱、智能家电等智能设备更多地出现在了人们的日常生活当中;与此同时,智能移动设备也逐渐开始配置了更多的语音功能:包括手机、平板电脑的语音唤醒,声纹识别等功能逐渐融入我们的生活。然而,如何利用智能设备中配置的麦克风阵列板来解决噪声场景下远场拾音的降噪问题,仍是学界与工业界有待解决的一大问题。目前,影响当前的智能语音设备使用效果的最重要原因是复杂的噪声场景
5G移动通信系统采用LDPC码和极化码为增强移动宽带场景中数据信道和控制信道的纠错编码方案,同时3G和4G则采用Turbo码为主要的信道编码方案,对于多模移动终端基带处理器,需要同时支持以上三种码型。而这三种码型的主流译码算法各不相同,采用独立硬核会大幅增加芯片成本及功耗。因此,本文针对4G及5G中的Turbo码、LDPC码和极化码,从顶层算法的角度研究通用译码器架构。本文首先将Turbo码和极化
随着人们对移动通信可靠性需求的日益增加,特别是LDPC码被确定为5G、ATSC 3.0等重要通信标准的信道编码方案后,对LDPC码编译码的研究也越来越迫切。同时应用场景的不断丰富,也对LDPC码的编译码提出了新的要求。例如,广播公司在实际中会以过度功率传输信号,以确保边缘用户的可靠接收,这会导致功率过剩的问题。此外,传统广播与移动通信越来越趋于融合,最新的5G标准中便引入了用于广播的En TV(E
近些年来,水声通信技术得到了快速发展,由于声信号传播速率低,通信机相对运动等问题,水声通信存在明显的载波频率偏移(CFO)。CFO会使信号发生频率和相位的偏移,影响水声信号的恢复,降低通信质量,因而准确估计水声通信中存在的CFO并对其进行补偿,对于正确恢复信号,实现高质量的通信十分重要。由于水下可用于信号传输的频带有限,为了提高频带利用率,需要用到频带复用技术。正交频分复用(OFDM)是目前最常用
共同富裕是社会主义的本质要求,是人民群众的共同期盼,文旅融合是推动乡村振兴和共同富裕的重要抓手。新昌县镜岭镇依托丰富的自然资源和深厚的人文底蕴,以乡村振兴战略支持特色文旅产业发展为基础,既要"颜值",也要"产值",更要挖掘潜能,创造"增加值",不断提高乡村文化旅游的发展质量和综合效益,找到了一条从困境中破局的"文旅特色道路"。
期刊
通过光学方法产生超宽带(UWB)脉冲信号是微波光子学的重要功能和应用,得到学术界和工业界的广泛关注。传统的电学产生方法受限于电子器件带宽瓶颈,而光学方法除了有损耗低、带宽大的固有优势外,还具备重量轻、体积小、可调谐以及抗电磁干扰等众多优点。已有的超宽带光脉冲产生方案复杂、系统庞大且易受环境干扰。论文提出一种基于范诺(Fano)谐振的超宽带光脉冲产生集成芯片方案。范诺谐振由微环谐振腔耦合马赫曾德干涉
分子通信是构建纳米机器网络(纳米网络)最可行的通信方案之一。基于分子通信构建纳米网络将拓展纳米机器群体的能力,给生物、医疗、国防和工业等诸多领域带来创新性的进步。其中,基于扩散的分子通信,由于能耗低、简单易实现等优点,是最受关注的分子通信方案。目前,分子通信的研究主要集中在理论研究方面,其中信道模型是分子通信理论研究的基础。尽管领域内现已提出多种基于扩散的分子通信信道模型的建模方法,但是经大量文献
毫米波(Millimeter Wave,mm Wave)由于具有丰富的频谱资源成为未来移动通信研究的热点,同时,毫米波与混合预编码(Hybrid Precoding,HP)结构密切相关,对于混合预编码结构下的毫米波系统研究具有更重要的现实意义。由于在毫米波系统中频繁的信道估计对系统开销、时延、吞吐量等带来了巨大的挑战,使得利用信道时间相关性的信道跟踪技术凸显出优势,所以对于毫米波系统的信道跟踪技术
移动边缘计算(MEC,Mobile edge computing)技术作为第五代移动通信系统的核心技术之一,将云计算能力与业务平台下沉到网络边缘(基站/终端)。靠近用户的无线接入网能就近向终端用户针对计算密集型、时延敏感型业务提供云计算与互联网技术服务,比如车载导航、虚拟现实技术等。基站/终端部署MEC服务器后,会对传统网络的通信、计算、缓存等资源的调度产生影响。因此本文对引入MEC的中继通信和D