论文部分内容阅读
地质处置库封装系统是高放射性废物(high-level radiactive waste)地质处置库的重要组成部分,针对地质处置库封装系统有效性的研究中,封装过程中的渗流-应力耦合问题是最为关键的问题之一。本文基于有效孔隙率概念,建立了有效孔隙率演化方程,刻画了孔隙空间变化过程中孔隙通道闭合或张开的演化过程。基于有效孔隙率演化方程,对幂函数形式的渗透率方程进行了修正,进而量化了孔隙结构变化对孔隙介质渗透性的影响。针对封装系统中膨润土/石英砂混合物低渗透和高膨胀性特点,建立了以巴塞罗那基本模型(BBM)为典型的膨胀性非饱和土弹塑性模型的隐式积分表达式,降低了对膨胀性非饱和土数值计算时间步长的要求并提高了OpenGeoSys软件中计算膨胀性非饱和土的数值计算能力。通过对膨润土/石英砂混合物渗流过程和压缩过程进行了数值模拟,并将数值计算结果与实验数据对比分析,验证了有效孔隙率、幂函数渗透率演化方程和膨胀性非饱和土弹塑性力学模型的数值积分表达式的有效性,并得到了MX80膨润土/石英砂混合物渗流应力耦合的数值模拟参数。进一步分析了地质处置封装系统近场围岩在开挖后的应力变化对渗流性能的影响规律,提出了以渗透率为参照变量的围岩简化等效数值计算模型。对地质处置封装系统现场的渗流-应力耦合实验进行了数值模拟研究和分析,揭示了地质处置封装系统中渗流-应力耦合过程中的相互影响规律。本文的具体研究内容和结论如下:(1)建立了有效孔隙率和渗透率的演化方程。通过引入有效孔隙率的概念,以孔隙介质细观结构变化过程作为出发点,依据代表性体积单元(representative volume element,RVE)中真实应变理论,并依据谢和平[1-3]提出的岩石损伤模型的形式中损伤与应变成平方的关系,从而建立有效孔隙率演化方程。随后将有效孔隙率演化方程代入Kozeny-Carman方程和幂函数形式的渗透率方程中,进而建立基于有效孔隙率表达式的孔隙介质固有渗透率的演化方程。通过对实验数据拟合并对比两种渗透率演化方程的拟合效果,分析两种渗透率演化方程的适用性。通过实验中有效孔隙率变化数据拟合,表明有效孔隙率能够较好的反映孔隙介质变形对有效孔隙率的影响,但对于各相异性材料,有效孔隙率演化方程具有不适用性。通过与常用的孔隙率方程对比分析可知,本文提出的有效孔隙率演化方程需要的参数较少,便于工程计算,同时能够从物理层面解释孔隙介质变形过程中有效孔隙率的演化过程。通过对试验中渗透率变化数据进行拟合并分析可知,基于幂函数形式的渗透率演化方程适用范围更广,幂函数渗透率演化方程能够较好的反映孔隙介质细观结构变化对渗透性能的影响。(2)建立了描述非饱和土弹塑性力学模型的隐式积分表达式。分析并选定适用于描述地质处置封装系统中膨润土/石英砂混合物弹塑性力学行为的模型,随后基于返回映射数值积分算法原理以及关联流动法则,对弹塑性力学本构模型的积分过程进行推导,并最终建立了基于返回映射算法的隐式数值积分表达式。(3)对围岩开挖及开挖后渗流过程进行数值模拟研究。地质处置封装系统中,围岩开挖是对处置库近场的力学场和渗流场进行扰动的过程,因此,在对地质处置库封装系统的渗流-应力耦合过程进行分析和数值计算时,应当充分考虑是处置库近场围岩的应力变化和渗透性变化。对近场围岩巷道和核废料封装硐室的开挖过程进行数值模拟,分析开挖过程中的应力场影响范围,并将有效孔隙率和渗透率演化方程代入围岩渗流场的计算方程中,从而分析孔隙率变化对围岩渗流场的影响。最后为了降低数值计算时间,解决封装系统模型问题,建立了封装系统近场围岩的轴对称模型并调整了围岩的固有渗透率,以等效钻孔近场围岩中应力场对渗流场的影响。对围岩开挖过程中的应力场数值模拟研究发现,巷道水平方向2m后的应力场水平可以近似为整体围岩开挖前的初始应力状态。应用本文提出的有效孔隙率和幂函数渗透率演化方程,对钻孔周围渗流场的变化进行数值计算,数值计算结果显示,钻孔开挖后,受变形影响,钻孔前端区域渗透性增大,而钻孔前端与侧面交界附近区域渗透性降低。以围岩随时间的吸水量变化为参照目标,数值计算结果与实验数据的比较分析可知,等效模型的数值计算结果能较好的吻合实验测定的数据,表明这种等效的方法具有很好的可行性。(4)对膨润土/石英砂混合物的渗流-应力耦合过程进行数值模拟研究。采用基于返回映射的隐式数值积分算法,同时应用有效孔隙率与幂函数渗透率演化方程,对膨润土/石英砂混合物的渗流-应力耦合过程数值模拟研究。数值模拟研究以sealex实验中的膨润土/石英砂混合物吸水实验、渗透实验、压缩实验和封装室内实验为研究参照对象,首先通过吸水实验测定膨润土/石英砂混合物在数值计算过程中所需的土水特征曲线,并确定相关物理参数,如初始孔隙率、密度、初始吸力等参数。随后对膨润土/石英砂混合物的渗流过程进行数值模拟,基于有效孔隙率和有效渗透率演化方程,分析膨润土/石英砂混合物中孔隙结构变化对渗流-应力耦合过程的影响,并验证有效孔隙率与渗透率演化方程的适用性。采用非饱和土弹塑性力学模型的返回映射隐式积分算法对膨润土/石英砂混合物在压缩过程中的弹塑性力学行为进行数值模拟,从而验证第三章中巴塞罗那基本模型数值积分算法的准确性。最后将在渗流与压缩实验的数值模拟参数代入对封装系统渗流-应力耦合室内实验的数值模拟研究中,从而对膨润土/石英砂混合物的渗流-应力耦合过程进行分析。对膨润土/石英砂混合物渗流过程、压缩过程和封装系统渗流-应力耦合室内实验的数值模拟结果表明,有效孔隙率和幂函数渗透率演化方程能较好的反映膨润土/石英砂混合物膨胀过程中细观结构变化对渗流场的影响,基于回归映射的巴塞罗那基本模型隐式数值积分算法能够很好的反映膨润土/石英砂混合物的弹塑性力学行为。实验结果与数值结果对比分析表明,数值计算中采用的基本控制方程和数值模拟参数具有一定的合理性。(5)对地质处置封装系统的渗流-应力耦合过程进行数值模拟研究。对地质处置封装系统的数值模拟研究不能只依靠与对室内实验的预测研究,室内实验与实际工程之间存在具有一定的尺度效应以及不能考虑到的其他影响因素,因此,本研究内容通过对地质处置封装系统现场实验进行数值计算并对比分析,从而分析数值计算在对封装系统现场渗流-应力耦合过程的应用中所采用的理论模型、计算方法和计算参数的适用性。以SEALEX实验中封装系统的渗流-应力耦合现场实验为研究参照对象,在考虑围岩开挖后的渗流场变化情况时,采用通过修正围岩渗透率而等效的围岩轴对称模型和数值计算参数,应用有效孔隙率和渗透率演化方程,以及返回映射隐式积分的非饱和土弹塑性模型的数值积分算法,对封装系统的渗流-应力耦合过程进行数值模拟。通过数值模拟与实验结果对比,分析数值计算模型、数值计算理论和计算方法等在对封装系统现场渗流-应力耦合过程的模拟中的有效性和适用性。结合实验结果,对数值计算结果进行分析,讨论地质处置封装系统渗流-应力耦合过程的机理和影响因素。对地质处置封装系统渗流-应力耦合过程的数值计算结果与实验结果对比分析表明,数值计算结果能够解释封装系统渗流-应力耦合过程的机理,但由于数值计算模型中忽略了膨润土/石英砂填充块体膨胀过程中与钻孔的接触过程,填充块体之间可能存在的未闭合缝隙,以及填充块体受压缩而出现液体回流过程等影响因素,数值计算结果与实验测定的结构有一定范围的偏差。地质处置封装系统中的空隙对封存系统的应力水平具有影响,封装填充材料中一定的膨胀应力能够降低填充块体中心区域渗透率。由于围岩与膨润土/石英砂混合物的孔隙吸力之差对填充块体的渗流-应力耦合过程具有一定的影响。