论文部分内容阅读
可充锂空气电池具有能量密度高(达5200Wh kg-1,氧计算在内),绿色环保等优点,是目前备受关注的电化学能量存储体系。自K. M.Abraham构造出首个可充锂空气电池以来,世界各国科学家已经对其展开大量的基础研究工作。虽然已经取得一些初步研究成果,但是对于可充锂空气电池研究仍然处于初级阶段,在实用化之前,两个关键性问题需要解决:1)在缺乏高效氧还原(ORR)和析氧(OER)双效催化剂时,放电产物(过氧化锂或氧化锂)将会逐渐沉积于空气电极空隙并堵塞电极,从而使得氧气不能顺利进入反应界面,导致电池放电停止;2)碳酸酯及醚类电解液应用在锂空气电池中不稳定,在活性氧作用下非常容易分解,从而使得电池性能劣化。本论文针对氧还原/析氧双效催化剂和电解质体系存在的问题进行应用基础研究。主要研究内容如下:一、使用小分子含氮配体邻菲啰啉螯合过渡金属钴得到钴配合物,将钴配合物负载于BP2000碳载体上,通过热处理制得Co-N/C双效催化剂,探索了热处理温度对Co-N/C催化剂性能的影响。结果表明,800℃热处理的催化剂表现出最优的电化学性能,旋转圆盘测试证实,在有机电解液中为两电子转移机理,氧还原产物为过氧化锂。Co-N/C催化剂在锂空气电池中首圈放电比容量为3221mAh g-(1按空气电极中碳或催化剂质量计算锂空气电池比容量),催化性能与大环化合物钴卟啉(Co-P/C)催化剂相近。二、基于所制备的Co-N/C双效催化剂,制作锂空气电池空气电极进行电解质研究。制备了PVDF-HFP聚合物电解质,研究了纳米SiO2作为添加剂对聚合物电解质电化学性能的影响。结果表明所制备的聚合物电解质表面致密、没有缺陷孔。纳米SiO2的添加降低了聚合物电解质结晶度,提高了聚合物电解质离子电导率(添加量为3%时离子电导率为1.3×10-5S cm-1,锂离子迁移数为0.36),使用该聚合物电解质制作的锂空气电池在电流密度为0.2mA cm-1时,展现了3163mAh g-1放电比容量。三、为进一步提高PVDF-HFP聚合物电解质离子电导率,使用离子液体PP13TFSI替代纳米SiO2对电解质进行改性后,电解质离子电导率提高明显(4.9×10-5S cm-1),使用该聚合物电解质制作的锂空气电池充电极化减小0.2V(充电电压为3.6V),电池的倍率性能得到提高:在电流密度为1mAcm-1时,展现了1246mAh g-1放电比容量。四、针对电解液电化学稳定性差的现象,研究了甲基磷酸二甲酯(DMMP)为有机溶剂的电解液电化学性能。1.0M LiTFSI-DMMP电解液具有较高室温离子电导率(5.1×10-3S cm-1)和较宽电化学窗(5.5Vvs. Li/Li+)。循环伏安测试表明该电解液具有良好溶氧能力和氧气扩散系数,氧还原为多步骤过程,电解液还原起始电位为~2.5VLi/Li+,还原产物的氧化峰电流出现在~3.2VLi/Li+,低于碳酸酯电解液(~3.28VLi/Li+)和四乙二醇二甲醚电解液(~3.56VLi/Li+)。重复扫描50个周期后的循环伏安曲线发现,LiTFSI-DMMP电解液峰电流轻微衰减,表明氧还原产物在玻碳电极表面没有明显积累。五、基于全氟磺酸膜制备了LiTFSI-DMMP/PFSA-Li聚合物电解质。电化学测试表明该电解质具有宽的电化学窗口(5.0V vs. Li/Li+),室温离子电导率高于PVDF-HFP聚合物电解质一个数量级(1.4×10-4Scm-1),锂离子迁移数有所提高(0.48)。使用该聚合物电解质制作锂空气电池,展现出非常高的充放电比容量以及倍率性能,在电流密度为1mA cm-1时,放电比容量2471mAh g-1。限定时间(两小时)三十个充放电周期效率为98%。X射线光电子能谱表明放电产物为锂氧化物,核磁结构分析证实该电解质在锂空气电池循环过程中结构稳定、没有分解。