论文部分内容阅读
发展以煤炭热解多联产工艺为代表的洁净煤技术是实现我国能源安全、清洁利用的重要途径。煤炭热解多联产工艺不仅可以生产电力,而且可以将煤炭中高品位的油气资源提取出来,有助于实现煤炭的清洁、梯级利用,但热解产生的高温煤气中含有大量粉尘颗粒,对各组分(焦油、煤气)的后续利用不利。静电除尘技术具有效率高、压降低以及处理烟气量大等优点,在常规电厂已得到了大规模应用。然而,针对热解煤气的高温静电除尘技术的研究尚不完善,优化设计与运行的经验严重匮乏,无法满足煤炭热解多联产工艺的要求,亟需开展系统的研究。鉴于此,本文开展了高温热解煤气环境中静电除尘器放电机理与除尘特性的应用基础研究,以期为高温热解煤气静电除尘技术工业化应用提供关键数据和理论指导。本文首先搭建了线管式高温放电实验装置,研究了温度、气体介质对放电特性的耦合影响规律。高温会促进放电过程,降低起晕电压并且增大电流,但温度升高同时也会导致除尘器运行电压区间缩短。在CO2等电负性气体放电过程中,随着输出电压升高,依次可以观察到三种类型的放电阶段,即电晕放电、辉光放电和弧光放电。然而,在H2等非电负性气体放电过程中,只观察到了辉光放电。在CH4气体和CO气体放电过程中,由于气体分子本身较为活跃,与高能电子的碰撞易发生化学反应,生成固体碳。化学反应对CO气体的放电特性几乎无影响,对CH4气体放电特性的影响主要体现在两个方面:(1)碳丝的生长与掉落的过程会导致放电极间距变化,并造成放电电流剧烈波动;(2)在某些情况下,碳丝的生长较为稳定,并且会触碰到阳极,造成阴阳极之间短路。在高温放电实验研究的基础上,本文建立了高温放电模型,用于分析放电过程中的电荷分布以及电场强度分布。在空气负直流放电过程中,电子浓度随着半径r先增加,并在电离边界处达到最大值,随后逐渐降低。负离子浓度分布与电子分布相似,不过负离子是在吸附边界处达到最大值。正离子在阴极表面浓度最大,在电离区中浓度急剧降低,并在电离边界处降为0。在相同工况条件下,电负性差的气体放电过程中,电子浓度较高,负离子浓度较低,电场强度较低。非电负性气体,如N2、H2,在放电过程中不存在负离子,迁移区电荷均由电子构成。正极性放电过程中,电子主要集中在电离区,迁移区中仅存在少量从电离区漂移过来的电子,迁移区中电荷主要由正离子构成,正离子的浓度比电子浓度高4个数量级。本文搭建了小管径高温静电除尘实验装置,研究分析了温度和气氛对静电除尘器的效率和能耗的影响。高温对静电除尘器运行不利,温度升高,导致除尘效率下降、能耗升高。气氛对静电除尘器运行有较大影响,在600℃,热解煤气气氛中的最高除尘效率为77.12%,对应的能耗为58.35 W/(g/Nm3)。针对高温煤气静电除尘过程中存在的效率低、能耗高的问题,本文研究了气氛调质和正极性电源两种优化方法。通过向热解煤气中添加CO2气体,在400℃,最大除尘效率提升了6.02%,并且在12kV输出电压的条件下,能耗指数降低了4.08 W/(g/Nm3)。正极性电源对高温热解煤气静电除尘器的除尘效率和能耗具有优化效果,并且随着温度升高,正极性电源对静电除尘器除尘效率的优化效果加强。在600℃,正极性电源将高温热解煤气静电除尘器的最高除尘效率提升了11.8%,并且在10kV输出电压的工况中,正负极性静电除尘器的能耗指数分别为17.01W/(g/Nm3)和39.54W/(g/Nm3)。基于实验研究结果,本文设计并搭建了高温热解煤气静电除尘中试装置。在500℃含油热解煤气条件下除尘器运行稳定性良好,并未出现短路等情况,除尘效率虽在61-78%之间波动,但随运行时间并没有明显下降。添加水蒸气可以优化放电特性,提高击穿电压,从而提升除尘效率。在500℃的烟气气氛中,通过水蒸气吹扫将水蒸气浓度从6.89%提升至18.53%,击穿电压从35kV增加至45kV,最高除尘效率从71%提升至78%。