论文部分内容阅读
红曲色素是天然色素的重要组成部分。近年来,随着食品安全意识深入人心,红曲色素以其安全,稳定,低廉的优势而备受关注。然而,我国红曲色素产品单一,生产水平低,品质不稳定等方面,成为了中国红曲产品拓展国际市场的巨大障碍。因此,开发新型天然色素,改善红曲色素品质,提高产品竞争力,成为我国食品添加剂行业的发展重点。“水溶性红曲黄色素”的开发,拓展了红曲色素产品的应用领域,标志着我国红曲色素产品研发水平进入了一个新阶段。但是,该红曲色素衍生物的分子结构尚不明确,给产品的推广应用及其工业化技术革新带来了一定障碍。本文以分离纯化水溶性红曲黄色素为基础,鉴定并阐明各组分的分子结构为目标;笔者以工业化生产的水溶性红曲黄色素为原料,采用薄层层析法,高效液相色谱法,光电二极管阵列检测器–蒸发光散射检测器联用技术,液相色谱–电喷雾质谱仪联用技术,多级质谱技术,高分辨质谱技术等实验方法,经过了大量的实验,确立了较优的色谱质谱条件,完成了水溶性红曲黄色素6个主体组分的分离纯化与结构鉴定工作。主要研究结果如下:1.建立了水溶性红曲黄色素的薄层色谱分离条件。以色谱级甲醇为提取剂,三氯甲烷:甲醇=1:1(v/v)为展开剂,展开30分钟,能够有效地分离水溶性红曲黄色素。2.依据薄层色谱的初次分离得到的不同色带,利用高效液相色谱法进一步分离纯化,并确立了较优的色谱条件。同时,光电二极管阵列检测器–蒸发光散射检测器联用条件的确立,为液质联用仪中的液相色谱部分奠定了基础。采用美国Waters公司Sunfire C18柱(4.6 mm×150 mm,5μm),0.8 ml/min流速,甲醇和水梯度淋洗(见表3.1);蒸发光散射检测器要求气体压力25 psi,喷雾器温度45℃,漂移管温度60℃,增益为1。3.多种质谱技术的应用,确定了不同组分的分子量和元素组成(见表5.1),从而为各组分分子结构的分析以及裂解途径的推断提供了可靠的信息来源。该论文的完成,深化了我们对水溶性红曲黄色素结构层次的认识,为加快工业化技术创新,扩大产品的应用推广,稳定产品品质奠定基础。同时,也为相关标准的制定提供依据和参考,为改善人们的生活品质具有促进作用。