论文部分内容阅读
随着网络通信的不断发展,人们对网络速率和网络利用率提出了越来越高的要求。高稳定、低抖动的短脉冲源是实现高速光传输的基础,同时利用先进的光调制技术(如DPSK/DQPSK)来提高网络的频谱利用率,是目前高速光传输系统中广泛采用的办法。而作为实现高速光信号传输重要的一环,全光3R再生技术成为确保全光网络传输质量的重要方法。本文就基于光纤光参量放大(FOPA)的光短脉冲压缩技术和相位调制信号的全光再生技术进行了相关的研究工作,并取得了以下研究成果:提出了在FOPA基础上实现脉冲进一步压窄的新方案,即采用将FOPA与啁啾管理相结合的方法,在不提高泵浦功率的条件下使输出的脉冲宽度得到了进一步的压缩。理论和实验证明:若泵浦光通过同频相位调制引入负啁啾(或正啁啾),参量放大后闲频光的啁啾为泵浦光的两倍,通过合适的色散补偿介质,可以得到比无相位调制时更窄的脉冲。针对同频正弦强度调制和相位调制产生光脉冲方案中存在的基座较高和旁瓣较大的问题,提出了通过灵活利用强度调制器的倍频调制特性,产生低占空比的光脉冲来抑制相位调制引入的不利啁啾的影响。实验得到了脉宽11.4ps的短脉冲,且消光比高,无基座,完全适合于未来OTDM系统的应用和研究。对DPSK的调制和解调原理进行了详细的阐述;通过仿真对影响接收机性能的参数进行了全面的分析;设计制作了一种基于全光纤的马赫-曾德尔干涉仪的DPSK解调器,给出并分析了基于该解调器的DPSK调制与解调的实验结果。对基于饱和FOPA的DPSK全光再生技术进行了理论分析和仿真研究,结果表明,该结构能够在保持相位信息的同时可以实现DPSK信号的幅度再生,从而有效地降低系统误码率,延长传输距离。提出了采用相位转偏振技术与半导体光放大器(SOA)相结合实现DPSK信号全光再生的方案。理论分析并仿真验证了基于该方案的40Gbit/s的RZ-DPSK信号全光再生过程,并得到了良好的幅度和相位再生效果,为下一步的实验实现提供了切实可行的参考。提出了将偏振延时干涉仪与MZM-SOA相结合实现DQPSK全光再生的新方案,并通过数值仿真得出了信号再生前后的相位分布和强度分布,证明了该方案的可行性和有效性。