【摘 要】
:
microRNA是一类内源性的长度在22个核苷酸左右的非编码小分子RNA,它们广泛存在于真核生物基因组中。成熟的microRNA是由茎环结构前体pre-miRNA加工而来。microRNA基因具有三大生物学特性:保守性,基因成簇存在和时空特异性表达。成熟microRNA通过翻译抑制和靶mRNA降解两种机制来调控基因表达,在动植物的生长发育,细胞的增殖与死亡,细胞分化及肿瘤治疗等多种领域发挥着重要的
论文部分内容阅读
microRNA是一类内源性的长度在22个核苷酸左右的非编码小分子RNA,它们广泛存在于真核生物基因组中。成熟的microRNA是由茎环结构前体pre-miRNA加工而来。microRNA基因具有三大生物学特性:保守性,基因成簇存在和时空特异性表达。成熟microRNA通过翻译抑制和靶mRNA降解两种机制来调控基因表达,在动植物的生长发育,细胞的增殖与死亡,细胞分化及肿瘤治疗等多种领域发挥着重要的调控作用。近年来,microRNA基因及其靶基因的预测是对microRNA进行研究的热点。本论文独辟蹊径,从成熟microRNA序列出发,旨在探寻microRNA的进化特性和序列特征。全文分为三部分:第一部分对microRNA的生物学特性,合成过程,作用机制,功能及现阶段研究方法进行综述。第二部分分别运用Pearson相关系数,Spearman相关系数和物种距离定义构建模糊等价矩阵,由此得到18个物种的分子进化树。所得的三种microRNA进化树与物种实际进化关系相当,其中,又以核苷多联体的Spearman相关和物种距离定义所得进化树与实际进化关系最为接近。第三部分运用二项式分布的判定方法在不同置信度上寻找microRNA的8-mer编码方式,包括从横向寻找物种特异的编码方式和从纵向寻找家族特异的编码方式,同时对家族序列的位点信息进行挖掘。由此得到的物种特异码字和家族特异码字便构成了完整的8-mer码字表。另外,从家族的D1,D2分布图可以看出,microRNA的前半部分较为保守,这与microRNA种子序列的位置一致。
其他文献
本文研究一般互补约束优化问题的数值解法。利用Lagrange乘子函数建立了关于一般形式互补约束问题的含参等价非线性规划模型,并给出了具有积极集性质的乘子参数修正方法。基于此构造了一种新的光滑乘子逐步二次规划算法。在一般假设条件下,建立了收敛到W-稳定点的全局收敛性。对同样的模型提出了一种新的乘子序列罚函数算法。证明了当罚因子趋于无穷大时,在适当的假设和线性独立约束规范条件下,算法中由无约束罚问题的
本文选取了三个表征植物叶片机械强度的物理性状抗剪切力SR、抗弯强度BS和抗拉强度TS,以及五项物质基础指标叶干物质含量LDMC、比叶面积LMA、单位面积酸性纤维素含量ADF、单位面积酸性木质素含量ADL、单位面积硅含量Si来研究处于不同恢复演替阶段群落中植物的物理性状及其物质基础,从而探讨牧草对放牧活动的响应。得到以下结论:1.草原植物具有可测定的物理性状(机械强度)。2.植物物理性状因种而异,又
本文主要研究了电子—声子相互作用及压力对纤锌矿结构氮化物半导体表面电子态的影响。计入电子与表面光学声子相互作用,采用变分法讨论了半无限氮化物半导体表面电子态问题。利用类LLP中间耦合理论导出了系统的有效哈密顿量,获得了表面电子态能级随表面势垒V0的变化关系。对纤锌矿结构的GaN,AlN和InN进行了数值计算,给出了表面电子态能级、电子与表面光学声子相互作用能量和表面态波函数平均穿透深度d随表面势垒
Hamilton系统的理论和方法是既经典而又现代的研究课题,近几十年来随着其应用领域的逐渐扩大,许多问题有待进一步完善.本文一方面对Hamilton算子的背景及研究进展做了简单介绍,另一方面考虑了一类无穷维Hamilton算子的特征函数系分别在Abel意义,算术平均意义(Fejer平均),广义Abel意义,θ平均,以及Gauss-Weierstrass平均意义下的完备性问题,通过讨论它们的相互联系
采用溶胶-凝胶法制备出Z/Y型六角晶系铁氧体,并分别对其结构和微波波段的吸波性能进行了测试。从x-ray衍射谱上看,Z/Y型六角晶系铁氧体的成相温度较高。当Z和Y型六角晶系铁氧体的烧结温度分别为1300℃和1050℃时样品的微波吸收特性最好。对两种六角晶系铁氧体分别掺杂不同量的稀土铈和镧发现其微波吸收特性随稀土掺杂量的不同而改变,且变化的规律相似。稀土铈和镧的掺杂量x=0.3时,Z型六角晶系铁氧体
本文考虑一维非线性奇异抛物方程的有限元方法,证明了考虑积分近似时弱解的存在唯一性,并给出了不考虑积分影响时半离散解和全离散解的加权H1模估计,同时证明了考虑积分影响时有限元解的加权H1模估计。
具有奇异系数的微分方程是近年来在核物理、气体动力学、流体力学、边界层理论、非线性场和光学等实际问题中提出的一类重要方程,数值分析和求解该类方程具有重要意义。早在二十世纪六十年代,计算数学工作者就开始研究此类问题。他们利用有限差分、对称和非对称、标准和非标准有限元等方法研究此类方程的线性以及非线性问题,并取得了一系列良好的结果。本文利用奇异有限元方法研究了一般二维奇异非线性椭圆方程。首先,利用Ban
本文研究Rn的子集X上的一类带有不等式约束的不可微广义分式规划问题。首先,在X是非空开集(凸集),约束函数是连续可微的情况下,讨论了单目标广义分式规划问题(FP)。接着,在X是闭凸集(凸集),约束函数是局部Lipschitz(连续可微)的情况下,讨论了多目标广义分式规划问题(FVP)。获得了问题(FP)和(FVP)的一系列有关于最优性条件和对偶理论方面的新结果。
基因技术从其产生开始便引起社会科学界的关注和争论。多年来,关于基因技术的社会研究主要集中在伦理学方面,事实上,由于基因技术的普遍性和特殊性,它已经成为整个人类社会的重大问题,对它的研究也不应只局限于伦理学范围,而应将视野扩展至哲学、社会学、人类学等其它学科。论文在吸收现有研究成果的基础上,从个体人、群体人、和类人三大层面系统地考察研究基因技术对人(包括个人、社会、人类)产生的影响,卉对当下学界的一
本文研究了单模q-形变光场与E型三能级原子相互作用系统和单模q-形变光场与E型三能级原子依赖强度耦合系统中的两种量子特性。通过数值计算,分析了旋波近似以及共振条件下这两种系统中形变参数q对光子反聚束效应和原子偶极压缩效应的影响。不同于平均光子数万的线性影响,形变参数q增大将导致光子数算符[n]非线性增大,非线性地调整两种量子现象随时间演化曲线所包含的各种周期、振幅不同的波动,使各种波动以不同的周期