二维三元PbSnS2的化学气相合成及光电性能研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:luck88888
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
二维材料由于其超薄结构带来的独特物理和化学性质受到了研究者广泛关注,已经在光学、电子学、拓扑物理学等诸多领域表现出广阔的应用前景。相较于二维二元体系,二维三元体系通过引入第三种元素而提供了一个新的调节物理性质的自由度。新元素的引入改变材料的晶体结构和局部电子结构,进而改变材料晶体结构的对称性使其具有低对称各向异性等,同时局部电子内结构的改变导致三元体系较宽的吸收边。目前二维三元体系的研究还处于起步阶段,由于其可控制备性差,其在电子、光电子领域的研究受到严重阻碍。PbSnS2表现出层状材料、p型半导体、各向异性等性质,在光电子器件领域极具潜力,但是可控制备是限制其应用的主要因素。基于上述瓶颈,本文针对于新型二维三元半导体PbSnS2的可控制备及其光电性能开展相关研究,主要研究内容与成果如下:(1)本文选用Pb3O4、SnO、S粉作为前驱体,云母作为收集产物的衬底,盐、分子筛辅助,化学气相法合成了高质量二维三元PbSnS2纳米片;结合理论计算发现其具有较强的各向异性电子能带结构;利用角分辨偏振拉曼证明二维PbSnS2纳米片表现出较强的面内各向异性。(2)对PbSnS2进行了一系列光电性能测试,器件对532 nm激光有很好的光响应;角度分辨电子和光电测试显示器件具有强面内各向异性光电性能,Zigzag方向相较于Armchair方向表现出更高的响应度(RZigzag=21.9 AW-1,RArmchair=17.5 AW-1),更高的外量子效率,Armchair与Zigzag两个方向上的迁移率比值达到1.78(μArmchairZigzag≈1.78);变温电输运的测试表明材料与电极间存在63.7 meV的弱肖特基势垒。
其他文献
EF-P(Elongation factor P)是广泛存在于细菌中的蛋白质翻译延伸因子,其主要功能是减缓由新生肽链上的聚脯氨酸序列引起的核糖体翻译延宕并促进肽键的合成。此外,EF-P蛋白的翻译后修饰对其功能的发挥起着重要的作用。目前国内外鲜见有关放线菌纲EF-P蛋白的翻译后修饰方式的研究报道,阐明其翻译后修饰方式对其生命活动的研究具有重大的生物学意义。本论文选取嗜根考克氏菌DC2201为研究材料
随着第五代移动通信模式的全面开启,高速、可靠、大容量的通信网络刺激着各种应用技术的快速发展,推动着工业、生活智能化社会的演变。作为5G通信的重要技术之一,物联网通信
钛基复合材料由于其高比强度、高硬度和良好的生物相容性而在航空航天、医疗器械等领域有着广泛的应用。采用原位自生技术制备的颗粒增强钛基复合材料界面状态结合良好,目前常用的制备钛基复合材料的熔铸法易造成组织粗大,高温自蔓延合成法制备的复合材料致密度不高,而放电等离子烧结(Spark plasma sintering,SPS)作为一种新颖的粉末烧结方式,升温速度快,烧结时间短,可以短时间升至原位反应所需温
根据新课改的要求,高中思想政治课要创设实践性和活动型的课程,培育学生终身发展的关键品格和能力,必须大力开发思想政治课的相关教育教学资源。古诗词是我国文化的瑰宝,古诗
扭动微动作为四种基本微动方式之一,大量存在于实际工程中,其运动幅值微小,且产生的影响不易观察,但其引起的磨损和疲劳损伤所造成的零部件磨损失效不可忽视。扭动微动研究起步较晚,报道较少,目前主要集中于实验研究。本文着眼于摩擦热对扭动微动的影响,基于有限元方法,开展对两种铝合金材料的接触力学行为研究,通过用户子程序嵌入和应力场相关的热源模型,建立热-力耦合扭动微动预测模型,进而开展微动温度场和应力场数值
随着科技的进步与发展,多维力加载在复杂力学环境模拟、复现式康复治疗、机械零部件力学性能测试等领域应用越加广泛。液驱并联机构多维力加载系统具有承载力强、精度高、刚度大、误差均化等优点,能够满足多自由度、不同强度、不同加载频率的需求。然而柔性负载与并联机构的物理空间结构导致了多维力加载系统各自由度输出力的强耦合,难以实现各自由度通道的独立控制,降低了力/力矩复现精度,影响多维力加载性能。本文提出了一种
复合材料广泛应用于航空工业的许多重要结构件中,在这些结构件的表面铺放复合材料以增强其性能,传统的人工铺缠方式程耗时较长,成本较高,难以满足短周期、高效率的铺缠加工的需求。本文针对航空零件形状特点,研究六轴铺带铺缠机床的高效率铺缠路径规划算法。在分析铺带铺缠加工工艺要求及待铺缠件形状特点基础上,规划了铺缠加工初始路径;针对待铺缠表面局部区域曲率刀轴矢量的剧烈变化降低铺缠效率的问题,分析刀轴姿态的可行
自1953年,Watson和Crick首次提出DNA双螺旋结构以来,DNA作为遗传物质、信息载体和纳米材料被广泛研究,并成为多个领域的研究对象,如基因工程、DNA酶、生物信息学、信息存储、DNA纳米技术等。DNA作为一种天然的纳米材料,其完美的碱基互补配对原则(A-T、C-G)使其具备自组装的能力,从而在纳米结构领域成为21世纪备受瞩目的材料之一。DNA纳米自组装技术是通过人工设计合成DNA序列,
随着大数据、云计算等新型网络服务的不断涌现,网络流量呈指数级增长。采用单芯光纤的传统弹性光网络的传输容量已逼近其香农极限。为实现更高的通信传输容量,空分复用弹性光
随着软件技术的迅猛发展,其安全性得到了越来越多的关注。软件漏洞挖掘尤其是二进制软件漏洞挖掘已成为网络安全界研究的重点与难点。目前,针对Linux平台软件的漏洞挖掘工具