论文部分内容阅读
近年来,生产上常将亲水胶体加入面团中以提高面制品的感官品质与质地,亲水胶体对面制品的影响已成为食品学界的研究热点。羧甲基纤维素(CMC)是一种成本低廉且安全的阴离子多糖,广泛应用于如饼干、面条、面包等面制品中。CMC的添加,不仅满足大众对膳食纤维的需求,同时也通过与面筋蛋白作用而改善产品的感官与质地。然而实际生产加工过程中,一系列因素会影响CMC与面筋蛋白的相互作用(如蛋白质本身的性质、加工温度、盐浓度、pH等)。目前的研究大多数集中于探究加热和冷藏条件对两者相互作用的影响,氯化钠和pH两种因素的相关研究相对缺乏。此外,亲水胶体对面筋蛋白的两种组分(谷蛋白和醇溶蛋白)的影响也少有报道。因此,本文以小麦面筋蛋白为原料,模拟了两种生产加工条件(不同pH、不同氯化钠含量),探究羧甲基纤维素(CMC)与小麦面筋蛋白及其两个组分的作用情况,为拓展其品质改良提供一定的基础,同时对新产品开发及产品的实际应用具有重要的现实意义。主要研究内容与结果如下:(1)在不同pH和不同氯化钠含量条件下,研究CMC对面筋蛋白流变与质构特性的影响。结果发现:CMC使面筋蛋白的弹性模量G′和粘性模量G″降低,更容易发生形变,硬度、咀嚼性也明显降低,CMC弱化了面筋蛋白的网络结构。CMC-面筋蛋白体系在中性和碱性条件下的粘弹性、硬度、咀嚼性均高于酸性条件,酸性条件不利于CMC-面筋蛋白弹性的维持。添加氯化钠,CMC-面筋蛋白体系的粘、弹性模量均降低。(2)对不同pH下的三种复合物(CMC-面筋蛋白、CMC-谷蛋白、CMC-醇溶蛋白)的溶解性、表面疏水性等进行测量,并利用SDS-PAGE、FTIR技术探究其分子量分布及二级结构变化。结果表明:CMC能增加面筋蛋白和谷蛋白溶解性,而降低醇溶蛋白的溶解性,CMC能结合面筋蛋白和谷蛋白的疏水位点。CMC-面筋蛋白、CMC-麦谷蛋白的溶解性均有pH依赖性,随着pH的增加而增加,谷蛋白对CMC-面筋蛋白的溶解性贡献较大。CMC-面筋蛋白的电泳条带强度明显降低,CMC可能会破坏面筋蛋白的二硫键,促进非共价键的形成。归属于低分子量谷蛋白的电泳条带强度明显降低,CMC更容易与低分子量谷蛋白亚基作用而形成聚集体。三种蛋白的主要二级结构均为β-折叠,中性条件下,CMC使面筋蛋白的β-折叠向α-螺旋转化。(3)利用Raman、DSC、SEM技术对不同pH下的三种复合物进行分析,结果表明:pH影响面筋蛋白的氨基酸残基微环境,pH6~8时,CMC使面筋蛋白的酪氨酸残基趋于埋藏,使色氨酸趋于暴露。三种蛋白的主要二硫键构型均为g-g-g构型,pH7时,CMC使面筋蛋白的g-g-g构型含量降低,可破坏面筋蛋白的分子间作用。在中性和碱性条件下,CMC使面筋蛋白、谷蛋白与醇溶蛋白的变性温度均增加。中性条件下,CMC的添加使面筋蛋白网络结构更为松散,使谷蛋白能够形成网络结构,赋予醇溶蛋白成膜感。(4)对不同氯化钠含量条件下的三种复合物(CMC-面筋蛋白、CMC-谷蛋白、CMC-醇溶蛋白)的溶解性、表面疏水性、游离巯基含量进行测量,并利用SDS-PAGE、FTIR技术探究其分子量分布及二级结构变化。结果表明:随着氯化钠含量的增加,CMC-面筋蛋白、CMC-谷蛋白的溶解性先降低后增加,CMC-醇溶蛋白的溶解性降低,CMC-面筋蛋白的表面疏水性逐渐增加,而CMC-谷蛋白、CMC-醇溶蛋白的表面疏水性逐渐降低。2%NaCl时,CMC-面筋蛋白的游离巯基含量最低,蛋白聚集程度较大。氯化钠使面筋蛋白电泳条带强度增加,更多的二硫键形成。随着氯化钠含量的增加,面筋蛋白、谷蛋白的α-螺旋转变成β-折叠,氯化钠可诱导面筋蛋白、谷蛋白形成氢键。CMC能破坏氯化钠诱导蛋白形成的氢键,维持蛋白原有的二级结构。NaCl使CMC-醇溶蛋白无序结构增加。(5)利用Raman、DSC、SEM技术对不同氯化钠含量条件下的三种复合物进行分析,结果表明:在不同氯化钠含量条件下,CMC会使面筋蛋白的色氨酸和酪氨酸残基趋于埋藏,而使谷蛋白、醇溶蛋白的色氨酸和酪氨酸残基趋于暴露,埋藏/暴露程度因氯化钠含量而不同。随着氯化钠含量的增加,三种蛋白的g-g-g构型含量降低,氯化钠可破坏面筋蛋白分子间二硫键,CMC能一定程度抑制氯化钠对蛋白二硫键稳定性的降低。2%NaCl条件下,三种蛋白复合物体系的热稳定性较强。从微观结构上发现,在低含量氯化钠条件下,CMC-面筋蛋白形成网络结构,而高含量氯化钠使CMC-面筋蛋白结构塌陷。在不同氯化钠含量条件下,CMC对谷蛋白、醇溶蛋白主要起到填充作用。