【摘 要】
:
周期性函数包含了各类周期函数、反周期函数和各类概周期函数.各类周期性系统不仅在天文学和经济学中,而且在生态学、通讯理论与控制理论等广泛存在.系统的周期性轨道体现了系统的规律性变化,历来受到诸多学者的重视.而周期性轨道的性态一直是微分方程理论研究的重要分支,尤其是近几十年来取得了实质和全面的发展,其研究成果非常丰富,许多文献和著作都总结和收录了这方面的工作,但是依然仍有许多工作需要我们去深究和拓广.
论文部分内容阅读
周期性函数包含了各类周期函数、反周期函数和各类概周期函数.各类周期性系统不仅在天文学和经济学中,而且在生态学、通讯理论与控制理论等广泛存在.系统的周期性轨道体现了系统的规律性变化,历来受到诸多学者的重视.而周期性轨道的性态一直是微分方程理论研究的重要分支,尤其是近几十年来取得了实质和全面的发展,其研究成果非常丰富,许多文献和著作都总结和收录了这方面的工作,但是依然仍有许多工作需要我们去深究和拓广.本学位论文讨论了整数阶与分数阶微分系统的周期性解,基于不同表现形式的不动点定理,在不同条件下,获得了系统存在各类周期性解的充分条件,并且给出了具体的例子说明结果的可行性.全文结构如下:第一章绪论,简要介绍了研究泛函微分系统周期性解的背景以及必要的预备知识第二章主要考虑整数阶中立型系统周期解的存在唯一性.首先利用积分因子把方程转化成等价的积分方程,构造适当的算子,然后基于Krasnoselekii’s不动点定理,给出了系统存在唯一周期解的一组充分条件.并利用压缩映射原理讨论了周期解稳定性.特别地,消弱了对函数f必须通常要满足Lipschitz条件的限制,所得结果包含了更多的应用范围.第三章考虑了如下具有多偏差变元的整数阶微分系统反周期解问题.其中τi,e:R→R→R是连续和T-周期的,f,gi:R×R→R也连续T-周期,n≥2是整数T>0,i=1,2,…,m当n=2、f(t,χ(t))=tf(χ(t))时,上述方程是多时滞Rayleigh方程.在工程问题中,f通常表示外界阻尼力或者摩擦力,gi(i=1,2,…,m)表示内驱动力,e表示外驱动力,τi表示内驱动力的滞延时问.基于Leray-Schauder度理论和一些分析技巧,获得了系统存在唯一反周期解的新结果.第四章,讨论了如下分数阶时滞微分系统概周期解的存在唯一性,其中1<α<2,A:D(A)(?)X→X是一个定义在复Banach空间X中的一个线性稠密扇形算子,f:R×X→X联合连续,而且关于t∈R是一致概周期.基于Banach空间的不动点原理,在A和f满足一定要求的条件下,获得了系统存在唯一概周期解的几组充分条件,所获得的结果在时滞方面改善和推广了分数阶微分方程概自守解的相关结果.
其他文献
平衡问题是变分不等式问题、凸优化问题、不动点问题、互补问题、纳什平衡问题等的推广.对平衡问题研究的不断深入,为我们研究金融、经济、网络分析、交通和不动产等领域产生的一系列问题提供了系统的、更广泛的研究框架.本文主要利用例外簇的概念来研究平衡问题(EP)和对偶平衡问题(DEP)解的存在性问题.首先,我们给出平衡问题例外簇的定义,其中对给定的r>dist(x,K),在两个空间中例外簇都限制在Kr上.接
由于测量仪器存贮介质等因素的影响,舍入数据在实际生活中经常出现.当数据出现舍入情况时,经典的统计推断会出现较大的问题,原来具备的优良性质不再满足,如无偏性,相合性等.由舍入带来的误差会被传递到所做的统计推断中,从而降低了统计推断的准确精度.因此,对舍入数据,迫切需要寻找新的统计方法或者是对已有的经典方法进行调整.另一方面,经验似然是近年来非常流行的非参数统计方法之一.它具有与参数似然类似的大样本性
非参数回归估计是研究回归模型的一种有用工具,在金融经济方面有重要应用,如在金融资产价格和收益率波动性等方面有重要的的研究应用.在非参数回归估计中,通常采用权函数回归估计.自Sotne(1977)提出非参数回归估计的权函数估计方法后,其方法引起了广泛的重视.对于固定设计回归模型Yi=g(xi)+εi,1≤i≤n,Gass and Muller[1](1979)引入了权函数从而称为Gasser-Mul
似然方法是参数统计方法中非常重要,应用相当广泛的方法之一,经验似然是参数似然方法在非参数方面的推广.用经验似然法构造置信区间有变换不变性及域保持性等很多优点,所以这一方法被广泛应用到各种领域中.L。似然方法是用更一般的函数代替了1og(u)而得到的一类较广的似然.实际上,它是参数似然的一种推广,在某些条件下比似然方法有更高的精度.Lq似然自从Davide和Yang(2010)提出后,得到了一些学者
Block et al.[Some concepts of negative dependence, Ann. Probab.10(1982),765-772]和Joag-Dev and Proschan [Negative association of random variables with applications, Ann. Statist.11(1983),286-295]首次引入了N
Block et al.[Some concepts of negative dependence, Ann. Probab.10(1982),765-772]和Joag-Dev and Proschan [Negative association of random variables with applications, Ann. Statist.11(1983),286-295]首次引入了N
本文中,主要是利用分组经验似然方法讨论了NA样本情形多元概率密度函数置信区间,证明了分组经验似然比统计量的极限分布为自由度为1的χ2分布,这个结果可以用来获得多元概率密度函数的经验似然置信区间.密度函数的核估计方法最初是由Rosenblatt [Remarks on some nonparametric estimates of a density function[J], Ann. Math.
众所周知,微分方程解的性态研究是微分方程理论中的一个重要分支.在自然科学和社会科学,例如物理学、天体学、经济学、生态学以及工程技术等等,这其中很多问题都可以归结为微分方程的数学模型.因此,研究微分方程的解的性态具有重要的现实意义.近年来,研究时滞脉冲微分方程的概周期解不仅在理论上获得了许多进展,许多研究工作者将这些理论应用于实际模型,例如神经网络模型,生态模型等,有助于对这些实际模型解的性态做深入
LNQD的概念是Newman于1984年首先引人的一类包含独立情形的相依随机变量.LNQD随机变量不但在多元统计分析,渗透理论和可靠性理论,而且在如通讯,气象等许多工程领域及风险分析中均有较广泛的应用.因此引起了国内外概率论与数理统计学者的广。泛关注和研究兴趣LNQD序列是一类包含独立序列和NA序列在内的非常广泛的相依序列.近年来人们证明了LNQD样木的指数不等式和矩不等式,并且得到了很多有意义的
近几十年来,时空斑图动力学一直是非线性科学研究的热点,通过对他们的研究,有助于了解发生在自然界和人类社会中的现象。螺旋波是一种重要的时空斑图,在一些物理、化学和生物系统中都观察到螺旋波,例如在心脏组织、蛙类卵细胞中的钙离子波、Belousov-Zhabotinsky化学反应系统等。在某些情况下,螺旋波和时空混沌对人类是有害的,例如,心肌组织中出现螺旋波会导致心动过速,心脏中的螺旋波自发破碎成时空混