【摘 要】
:
黄金是一种战略金属,具有重要的商业价值和金融属性。我国是世界第一黄金生产与消费大国,黄金增储对我国具有重要的战略意义。经过多年开采,高品位金矿逐渐枯竭,低品位难处理金矿已经成为我国黄金生产的主要资源。其中,高硫含砷难处理金矿具有储量大、处理难等资源特点及问题。本论文针对上述问题,以高硫含砷难处理金矿为研究对象,开展了高硫含砷难处理金矿细菌氧化机理和微波/微波-超声活化强化细菌浸出机理的研究。通过本
论文部分内容阅读
黄金是一种战略金属,具有重要的商业价值和金融属性。我国是世界第一黄金生产与消费大国,黄金增储对我国具有重要的战略意义。经过多年开采,高品位金矿逐渐枯竭,低品位难处理金矿已经成为我国黄金生产的主要资源。其中,高硫含砷难处理金矿具有储量大、处理难等资源特点及问题。本论文针对上述问题,以高硫含砷难处理金矿为研究对象,开展了高硫含砷难处理金矿细菌氧化机理和微波/微波-超声活化强化细菌浸出机理的研究。通过本研究完善了高硫含砷难处理金矿的细菌氧化机理,拓展了高硫含砷难处理金矿细菌强化浸出手段及理论体系,缩短了细菌氧化周期,提高了细菌氧化效率。该研究对我国高硫含砷难处理金矿的细菌氧化生产工艺的工业应用具有重要的理论指导意义,获得研究结果如下:(1)高硫含砷难处理金矿单槽细菌氧化预处理-氰化试验研究表明,通过控制分批加矿量及细菌氧化体系pH,可以提高细菌对矿浆体系的适应性,缩短迟滞期,进而缩短细菌氧化周期,有效提高细菌氧化效率。采用分批加矿量为15 g及控制细菌氧化体系pH在1.25~1.29之间的加矿制度,细菌氧化周期缩短约16%,硫、铁和砷的平均溶解速率分别达到55.4 mg·L-1·h-1、53.0 mg·L-1·h-1和3.4 mg·L-1·h-1。氰化试验研究表明,金和银的回收率分别与硫和铁的氧化率呈线性增长的关系;(2)高硫含砷难处理金矿细菌连续氧化预处理-氰化试验研究表明,游离细菌浓度和吸附细菌浓度随矿浆浓度的增加而减少。由于细菌在氧化过程中主要起催化作用,因此,催化剂浓度(游离菌浓度和吸附菌浓度)的降低对高矿浆浓度条件下高硫含砷难处理金矿的细菌连续氧化预处理造成不利的影响;为定量分析高硫含砷难处理金矿的细菌连续氧化效率,本研究提出了平均体积溶解速率和平均质量溶解速率两个参数。铁、硫和砷的平均体积溶解速率随实际矿浆浓度的增加而增加,而铁、硫和砷的平均质量溶解速率随实际矿浆浓度的增加而减小。相比于平均体积溶解速率,平均质量溶解速率能够更加直观地反映出高矿浆浓度对细菌连续氧化过程的不利影响;(3)通过分析不同加矿制度条件下高硫含砷难处理金矿的细菌氧化预处理过程,提出了高硫含砷难处理金矿中黄铁矿的两种反应机理模型:1)FeS2→S80→S2O32-→SO42-;2)FeS2→S80→SO42-。不同浓度下高硫含砷难处理金矿细菌连续氧化过程的动力学分析结果表明,高硫含砷难处理金矿细菌连续氧化过程中铁反应速率的控制方式为化学反应控制,硫和砷反应速率的控制方式皆为内扩散控制;(4)高硫含砷难处理金矿的微波/微波-超声活化强化细菌浸出试验研究表明,通过微波/微波-超声活化可有效缩短高硫含砷难处理金矿的细菌氧化周期,提高细菌氧化效率。通过优化,微波/微波-超声活化的最优条件如下:反应器直径为74 mm、溶液pH为7.00(超纯水)、微波活化时间为300 s、微波功率为349 W、目标温度为75℃、矿浆浓度为10%(w/v)、超声功率为1000 W。与原矿相比,采用优化条件可使细菌氧化周期缩短30%~40%,砷、铁和硫的平均溶解速率分别提高1.5~2.1倍;(5)研究了不同条件下微波活化体系升温特性曲线和温度场分布。研究发现在微波活化过程中,溶液pH对微波活化体系升温速率影响不显著。微波活化体系升温速率随微波功率的增加、反应器直径及矿浆浓度的减小而增大。活化体系温度并不均匀,形成了高温、中温和低温三个不同的温度区域;(6)活化前后高硫含砷难处理金矿矿物特性分析研究表明,微波/微波-超声活化促进了矿物颗粒中晶体晶粒尺寸的减小和显微应变的增加,有利于矿物颗粒粒径的减小和比表面积的增大,促进了矿物颗粒表面元素铁和硫的氧化,提高了矿物颗粒表面的亲水性,增加了矿物颗粒的表面自由能。经微波/微波-超声活化后,矿物颗粒表面出现显微裂纹,变得凹凸不平,甚至发生剥离现象,产生严重破坏;(7)根据高硫含砷难处理金矿的矿物颗粒物相组成的不同,提出了复杂物相(两种及两种以上)组成的矿物颗粒的微波/微波-超声活化强化细菌浸出机理模型和单一物相(黄铁矿)构成的矿物颗粒的微波/微波-超声活化强化细菌浸出机理模型。
其他文献
加压技术在有色冶金反应和凝固方面的研究和应用取得了长足发展,部分加压技术的工业化已经处于成熟阶段。然而,由于钢铁材料冶炼温度较高,加压难度大,加压技术在钢铁冶金领域的研究与应用较少。在钢铁冶金领域,加压最典型的应用是提高钢液中气体元素氮的溶解度,强化其合金化效果,从而进一步提升钢铁材料的性能。近年来,加压技术在钢铁方面的研究主要集中在含氮钢,尤其是高氮钢的制备技术,但加压技术在含氮钢凝固组织演变和
连铸板坯角部横裂纹是影响高强微合金钢连铸坯质量及其连铸生产顺行的主要因素之一,本文以梅钢生产的高强微合金钢为研究对象,分析探讨了连铸坯角部横裂纹成因及其控制技术方向,研究了不同冷却工艺条件下试验钢种的高温热塑性能,并利用数值模拟技术研究揭示了不同连铸工艺条件下结晶器和二冷区内的坯壳凝固热/力学行为;在此基础上,进行了新型曲面结晶器锥度优化、铸坯二冷高温区晶粒细化控冷技术等研究,并进行了现场工业试验
近年来,稀土在耐热钢中良好的应用效果已得到国内外的一致认可,但稀土耐热钢的连铸生产仍面临诸多困难,严重影响工艺顺行和铸坯质量。由于添加稀土后钢液具有极强的还原性,在使用传统硅酸盐系保护渣进行连铸生产的过程中,结晶器内普遍存在较为严重的渣金界面反应,导致保护渣的成分明显变化,性能不断恶化,无法满足多炉连浇的工艺与质量要求。研究开发适用于稀土耐热钢连铸的新型保护渣势在必行。本论文在总结前人研究工作的基
连铸过程中,源起于结晶器内的铸坯表面缺陷严重影响了连铸生产效率和铸坯质量。结晶器内是一个包含流动、传热、化学反应以及相变等行为的复杂耦合体系,各行为相互影响、相互作用,难以准确预测和控制。本文通过结晶器内多相流动、传热与凝固全流程模型的开发为研究结晶器内的动态耦合行为提供了重要手段,该模型基于实际连铸工艺条件,描述了自开浇至稳定浇铸阶段结晶器内弯月面与渣膜的形成以及传热与凝固的连续演变特征,并进一
近年来,随着先进轧机和高效轧制技术的问世,轧制生产线向着大型化、高速化和自动化的方向发展,使得作为轧钢核心装备的轧辊的使用工况变得更为苛刻。轧辊的性能优劣直接影响轧机的生产效率、轧材的表面质量和轧制的成本,因此,对轧辊材质和生产制备工艺的研究已成为国内外轧辊及冶金行业共同关注的问题。传统单一材质合金轧辊难以同时满足轧制过程对其耐磨性和强韧性的双重要求,而双金属复合轧辊,由于其辊芯和工作层(复合层)
电工钢主要用作电机、变压器等电力转化设备的导磁铁芯,是国民经济建设中应用最为广泛的金属功能材料,是衡量一个国家特殊钢制备水平的标志之一。“中国制造2025”、新一轮农网升级改造及中长期铁路网规划等国家重大战略计划对电工钢产品提出了更高要求。薄带连铸工艺亚快速凝固和近终成形特点在电工钢组织、织构和抑制剂控制方面具有独特优势,本文围绕薄带连铸制备高品质电工钢的关键工艺和机理,系统研究了薄带连铸电工钢化
自21世纪初以来,国内钢厂陆续新建包括在建多座大方坯连铸机,相对于传统的中小方坯,大方坯的质量问题更集中体现在铸坯内部质量上。连铸坯的轻压下技术可以有效解决中心疏松及中心偏析等铸坯内在质量缺陷。所以,为了提高铸坯内在质量而采用的轻压下技术的使用就变得尤为重要。与轻压下相关的技术有铸坯凝固模型研究、高温铸坯应变模型研究、铸坯偏析模型研究、轻压下制度研究等。针对本钢炼钢厂的轻压下大方坯连铸,建立了凝固
连铸凝固过程中,因热溶质浮力、晶粒沉淀、坯壳变形等多因素的作用下,枝晶前沿析出的溶质元素随液相流动最终造成铸坯宏观偏析。由于高温连铸过程的复杂性及当前检测条件的限制,传统铸锭凝固实验和连铸试验未能深入了解连铸凝固两相区液相流动与溶质传输行为,而普遍采用的连续介质数学模型无法充分考虑多因素条件下溶质偏析分布特征。此外,对铸坯宏观偏析形成机理尚不清晰且存在不同观点,对机械压下和电磁搅拌等外场作用下中心
钒、钛和铬是重要的战略金属资源,在高铬型钒钛磁铁矿中赋存量较大。高铬型钒钛磁铁矿储量丰富,综合利用价值高,该矿的综合研究利用对国民经济和国家安全具有重要意义。本文以高铬型钒钛磁铁矿为基础原料,在制备出合格的高铬型钒钛磁铁矿球团的基础上,研究了球团的抗压强度、还原膨胀和还原性、还原表观动力学以及软熔滴落特性和机理等方面的内容,考察了 TiO2、Cr2O3、B2O3和CaO等有价组元对高炉用球团冶金性
攀西红格矿区钒钛磁铁矿资源储量35.45亿t,是目前我国最大的钒钛磁铁矿矿床,除含有铁、钒、钛之外,还伴生有较高含量的铬资源,Cr2O3储量达900万t,具有极高的综合利用价值和重要的战略地位。现有钒钛磁铁矿综合利用工艺中,高炉-转炉流程存在有价组元利用率低、资源浪费严重、环境污染大等问题,煤基直接还原工艺具有能耗高、效率低、钛渣活性差等一系列缺点,未能实现大规模工业化生产。我国《钒钛资源综合利用