天宫二号机械臂运动学标定位形选取策略与轨迹跟踪控制研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:prcjzzz
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
空间机器人能够代替人类宇航员在空间环境中进行空间探索、科学实验等活动,大幅度降低了宇航员在太空活动中风险和成本。现阶段在轨任务中,相当多的一部分为非接触类的演示任务,对于接触类操作任务研究较少,而精细操作任务的研究更是寥寥。天宫二号机械臂属于舱内服务机器人范畴,主要用于满足航天器内设备维修和物体捕获的需求。本文主要研究天宫二号机械臂运动学标定位形优化选取策略以及针对两种类型操作任务的轨迹跟踪控制策略,并且进行地面重力环境与空间微重力环境下的仿真与实验验证。首先,研究天宫二号机械臂运动学标定位形优化选取策略。利用矩阵摄动理论,将测量误差与标定误差之间的辨识雅可比矩阵,推广到含有矩阵摄动表达的摄动辨识雅可比矩阵。接着根据摄动展开式,推导出辨识雅可比矩阵是如何被位形集合影响的基本原理,并且结合DETMAX算法,建立从位形摄动到奇异值变化的封闭映射,在避免数值计算不稳定的同时解决位形陷入局部最优的问题。通过与常见的随机搜索法,蒙特卡洛搜索算法,IOOPS搜素算法进行对比,证明本文提出的方法具有更高的标定精度。然后,提出一种基于滑模观测器的轨迹跟踪控制方案,用于天宫二号机械臂旋拧J599电连接器的操作任务,对关节迟滞特性和非线性摩擦特性进行分析,基于Swevers模型对机械臂在执行旋拧任务时的摩擦情况进行补偿,接着分析不同重力环境下的机械臂系统动力学模型,将机械臂系统模型以非线性系统状态方程的形式进行描述,通过将耦合扰动问题转化成非耦合扰动问题,对系统状态进行估计。将空间微重力环境下相对于地面重力环境下的模型变化视为内部不确定态,重力载荷的消失视为外部扰动,从干扰抑制的角度对这些非线性集总扰动进行解耦与重构。提出一种基于滑模观测器的轨迹跟踪控制方案,将神经网络中的Logistics函数应用到趋近律的设计中,提高控制系统的动态性能。接着,提出一种基于扩张状态观测器的轨迹跟踪控制方案,用于捕获空间漂浮小球任务,首先设计非线性扩张状态观测器将扰动扩张成新的状态并且对此进行估计,采用自适应参数整定方案对扩张状态观测器增益进行滤波,在第三章对模型内部不确定态和未知外扰进行成功观测的基础上,设计观测效率更高的扩张状态观测器,使内部不确定态和未知外扰脱离开集中扰动,利用先验结果提高观测效率,此种高阶扩张状态观测器能够在有限时间内估计出系统的未知状态和集总扰动。并且通过调节增益与阶数使计算复杂度与观测精度达到平衡。最后针对单目相机在景深方向精度较低引起控制抖振的问题,设计模糊滑模控制器,将控制律拆分成已知控制律和模糊控制律,利用模糊系统的切换增益代替切换控制律,降低捕获过程中会产生的抖振现象。最后,搭建天宫二号机械臂手系统实验平台,完成操作任务的同时对本文提出的算法进行验证。利用天宫二号机械臂、多指仿人灵巧手、遥操作系统、中央控制系统以及视觉系统等硬件搭建可用于执行旋拧J599电连接器、捕获漂浮小球任务的实验平台。对天宫二号空间站实验舱内的坐标进行定义与转换,编制地面模拟系统软件,用于地面同步验证实验。最后在舱内微重力环境下采用基于滑模观测器和扩张状态观测器的轨迹跟踪控制方案进行了旋拧J599电连接器实验与捕获空间漂浮小球实验。验证本文提出的方法在解决舱内标定问题、轨迹跟踪控制问题,具有很强的针对性和有效性,为这一类问题的控制策略提供一定的理论基础和指导意义。
其他文献
圆环板类高速旋转机械如高铁车轮、齿轮、汽轮机转子等近年来在国民经济中的地位越来越重要,而这些机械在运行过程中受到机械、气动、温度场甚至磁场等多种外载荷的单独或者综合作用,会产生由横向振动引发的噪声。强烈的噪声会严重影响人们的正常生产、生活以及交通工具的乘坐舒适性。然而现有关于旋转圆环板类构件的研究主要集中于其稳定性问题,而对于其振动噪声问题研究较少,因此,开展针对旋转圆环板类构件的振动噪声问题研究
作为自主智能无人系统的一个重要研究方向,分布式协同控制近年来吸引了社会的高度关注。其原因在于,数据样本往往分散在大规模的网络中,而分布式控制能很好地胜任这种网络结构。在分布式框架下,个体通过利用本地数据以及与其邻居进行信息交互来做出决策,从而使整个网络实现特定的目标。因此,分布式算法与传统的集中式控制算法相比具有很多优势,包括更低的成本、更高的灵活度、更强的鲁棒性、更好的可拓展性等等。很多实际问题
微电网为可再生能源的分布式并网发电及消纳利用提供了灵活有效的途径,也为配电网的运行和调控提供友好接口。微电网并网使得传统面向负荷调控的无源配电网向面向多微电网的有源智能配电系统迈进。多微网高渗透发展态势必然导致未来智能配电系统在调控对象类型多样化、调控时空维度扩大化、调控目标多元化等方面产生巨大变革,出现了物理层面的潮流管控和经济层面的配电市场建设等科学技术问题。现有配电网被动式调控机制逐渐显现出
单层网壳作为空间结构典型的结构形式,具有受力合理、经济性好、造型灵活多样等优点,常常作为地标类建筑。由于其较好的综合抗震能力,此类结构一直是地震灾害发生后人民群众和救灾人员的临时避难场所,然而一些空间网格结构在地震中也发生了不同程度的损毁甚至倒塌,其经济及社会影响十分巨大。装配式节点因其施工效率高、质量高及节能环保等优点逐渐在各类建筑中广泛应用。但在以往的抗震设计中,装配式节点一般被简化为铰接节点
Ti Al合金作为一种极具应用前景的高温结构材料,具有质轻、比强度和比刚度高、服役温度下耐氧化能力较强等优点,在航空航天发动机涡轮叶片、高超声速飞行器热防护系统、汽车和坦克增压涡轮叶片方面拥有巨大的应用潜力。然而,Ti Al合金的室温塑性较低(经过变形后Ti Al合金室温塑性也很难超过2%),而且Ti Al合金在变形温度下变形抗力大、氧化严重、变形不均匀和苛刻的加工窗口,均给后续的变形、机械加工、
超级电容器是一种基于电极/电解液界面电化学过程,介于传统物理电容器与二次电池之间的新型储能器件,在大功率设备、电动汽车、微型智能电子设备等领域有着广阔的应用前景。目前,如何在提高超级电容器能量密度的同时不牺牲其功率密度和循环寿命,是当前亟需解决的问题。本文以CoFe2O4基化合物为研究对象,首先以提高电极材料的比容量为目标,通过形成多孔结构和对产物形貌的调控实现电极材料性能的最优化,制备了高比容量
温度是重要的热力学参数,在工业生产、科学研究、基础设施建设以及生物医学方面都是必不可少的监测参数。稀土发光的荧光强度比(Fluorescence Intensity Ratio,简称FIR)型温度传感器以其测温灵敏度高、空间分辨率高的优势成为温度传感领域的研究热点。FIR温度传感技术具有非接触式温度测量的特点,可以实现对等离子体、细胞/生物组织内的高精度、高灵敏单点温度测量及成像,因此开展FIR测
高超声速远程滑翔飞行器具有飞行速度快、飞行空域广、飞行环境复杂的特点。一方面,为对抗日臻完善的导弹防御系统,高超声速远程滑翔飞行器需要具有对威胁区和拦截网进行规避、对拦截弹和探测网有效突防以及为满足制导或侦察需要经由特定区域等能力,同时,面对瞬息万变的战场态势,飞行器任务规划及弹道规划的时空复杂度急剧增加,对弹道规划与制导提出更高要求。本文针对滑翔飞行器再入中段和末段飞行过程中的气动参数辨识、滑翔
在电芬顿高级氧化技术中,电化学阴极还原O2和Fe3+可以连续产生H2O2和Fe2+,然后H2O2与Fe2+反应生成强氧化性物种(·O H),从而快速氧化降解水中难降解有机污染物。然而,传统溶液曝气(Solution Aeration,SA)模式因O2传质效率低导致的H2O2产量低以及Fe3+/Fe2+循环慢、有效pH范围窄等缺点限制了电芬顿技术的实际应用。针对此,本论文提出一种将气体直接通入碳纤维
乙醇型发酵是三种主要厌氧产酸发酵类型之一。乙醇型发酵产氢细菌具有产氢效率高、耐酸性强、自凝集生长、乙醇-H2协同生产和发酵产物可直接被产甲烷菌利用等优势,但目前对乙醇型发酵产氢产乙醇代谢调控机制的研究还不全面,利用乙醇型发酵从废水/废弃物中实现能源和资源的高效回收仍是一项挑战。本研究基于多组学研究策略,系统深入地揭示了乙醇型发酵产氢功能菌-哈尔滨产乙醇杆菌(Ethanoligenensharbin