【摘 要】
:
本文研究了连续时不变广义线性系统的可靠线性二次状态反馈控制问题.基于广义代数Riccati方程的解,在允许指定执行器集合中的执行器发生故障时,给出了可靠线性二次调节器的设
论文部分内容阅读
本文研究了连续时不变广义线性系统的可靠线性二次状态反馈控制问题.基于广义代数Riccati方程的解,在允许指定执行器集合中的执行器发生故障时,给出了可靠线性二次调节器的设计,并且保证了闭环系统容许(稳定)且性能约束的界可以被估计.进而,基于Hamiltonian矩阵束方法,考虑了一类广义代数Riccati方程的容许解存在的充要条件,并且给出了所有容许解的表示.作为中间步骤,一类代数Riccati方程的所有可逆化解的表示被推出.另外,为了应用方便,对主要结论设计了数值算法.通过例子说明了本文所提出方法的有效性.
其他文献
顶点代数理论目前已经成为数学中一个非常活跃和重要的领域,目前关于顶点代数的研究集中在复数域上的顶点代数,而对素特征域上的顶点代数的一般理论的研究还很不完善,类比特征
在生活实践中,存在着诸多不确定现象,这种不确定现象主要表现为随机性、模糊性及粗糙性。本文主要针对模糊数排序及模糊线性规划进行了详细的分析与讨论。首先,针对传统模糊
本文主要研究了两类问题:集值映射的广义对称向量拟平衡问题系统、广义向量拟平衡问题系统的间隙函数,具体内容如下:
在局部凸Hausdorff拓扑向量空间中,我们讨论了集值映射
本文研究了拟Banach空间中的广义可加泛函不等式的Hyers-Ulam-Rassias稳定性,讨论了二阶微分方程的Hyers-Ulam稳定性,最后通过转化与归纳的方法,得到了高阶微分方程的Hyers-Ulam
近30年来,超平面构形研究取得了重大的进展,并广泛应用于代数、组合、物理等领域。本文用矩阵方法讨论仿射超平面构形的可约性。 随着空间维数的增大,超平面个数的增加,由于缺
我国巨灾风险日显凸现,但目前我国的巨灾风险保障制度主要以政府作用为主,由于政府作用的局限性,此保障制度存在明显缺陷。我国巨灾风险保障制度的主要问题存在于商业化的巨灾保
对于无约束优化问题而言,信赖域方法是一类很有效的数值方法。信赖域方法思想新颖,算法可靠,具有很强的收敛性。不仅可以很快的解决良态问题,而且可以有效的求解病态问题,从而受到