论文部分内容阅读
近年来,面对环境污染、资源紧缺等一系列生态问题的挑战,绿色制造和节能减排成为众多国家可持续发展战略中的重要组成部分。在交通运输行业,加快提升车体轻量化水平是实现节能减排的必然选择之一。7N01铝合金作为一种典型的Al-Zn-Mg系高强硬质铝合金,具有密度低、比强度高、耐腐蚀性好等优点,被广泛应用于高速列车承重结构中,是满足轻量化设计要求的关键材料。但该合金流动性差,挤压工艺和型材质量控制难度较大。因此,为制定合理的挤压参数,保证良好的型材质量,需要对材料的高温流变行为和热加工性能进行全面深刻的掌握和分析。此外,在空心类铝合金型材的实际生产中主要存在两种挤压工艺,分别为分流组合模挤压和穿针挤压。相比于分流组合模挤压,穿针挤压不存在分流和焊合过程,避免了型材焊合不良缺陷的产生,有助于提高产品成品率,主要应用于无缝空心铝型材的生产。本文以高速列车用7N01铝合金材料为研究对象,采用数值模拟与实验相结合的方法,对7N01铝合金的本构模型、热加工图以及牵引梁型材挤压成形工艺开展了系统研究。本文开展的主要研究工作如下:(1)提出了一种求解材料本构模型参数的新思路,基于摩擦和温度双重修正后的真实应力-应变数据,分别以测量和模拟得到的压缩试样形状误差值最小和不同位移时刻载荷差值最小为优化目标,采用两步逆向分析方法先后获得了7N01铝合金热压缩实验过程中的摩擦系数和应变补偿型Arrhenius本构模型中的材料参数。(2)基于动态材料模型理论研究了不同压缩条件下应变对功率耗散效率和失稳参数的影响规律,建立了7N01铝合金的热加工图,确定了合理的工艺参数范围。并对7N01铝合金热压缩微观组织进行了观测和分析,构建了相应的动态再结晶模型。研究表明,强烈的动态回复和少量的连续动态再结晶是该合金变形过程中的主要软化机理,且温度的升高、应变速率的减小和应变的增大均有利于动态再结晶的发生。(3)利用HyperXtrude有限元软件,对7N01铝合金牵引梁型材分流组合模挤压和穿针挤压过程分别进行了数值模拟。通过对比模拟结果分析了以上两种挤压工艺的生产特点,并开展相关实验验证了所建立的本构模型及数值模型的准确性。另外,对穿针挤压型材横截面上不同位置处的微观组织和力学性能进行了表征,研究发现型材角部和边部区域对应的晶粒形貌及织构分布具有不同特征,但力学性能的差异并不明显。