论文部分内容阅读
大壁虎运动灵活,环境适应性强,具有卓越的三维空间的无障碍运动能力,成为理想的生物机器人和仿壁虎器人研究模型。探索不同倾角位置下大壁虎前庭核团的空间响应规律,将推进对大壁虎运动姿态神经调控机理的认识,为仿壁虎机器人姿态控制策略提供仿生启示。为定量分析大壁虎在不同空间下的前庭核区域神经元的放电响应特征,本文首先对大壁虎平衡感知实验平台进行了改进:增加转角同步测量系统,设计了角度传感器支架和联轴器;通过Matlab和Plexon集成程序设计,实现了转角信号与神经元信号的同步记录与显示。其次,本文利用四通道微丝阵列电极对大壁虎在不同倾角条件下前庭腹外侧核(Nucleus Vestibularis Ventrolateralis,Vevl)区域的神经元放电响应信号进行了在体记录。利用聚类分析和特征分析对所采集神经元放电响应信号进行详细分析,结果发现四类方向敏感性神经元:Roll同侧兴奋,Roll对侧兴奋,Pitch nose-up兴奋以及Pitch nose-down兴奋。Roll同侧旋转兴奋神经元剧烈放电响应的区域集中在同侧0°-120°,Roll对侧旋转兴奋神经元剧烈放电响应区域集中在0°-210°。Nose-up旋转兴奋神经元剧烈放电响应区域集中在nose-up 120°-180°、210°、240°。Nose-down旋转兴奋神经元,除nose-down 240°外,其余nose-down角度神经元放电响应均较为剧烈。大壁虎前庭神经元复杂的响应模式可能源于不同前庭输入神经元的共同作用。不同的Roll、Pitch倾斜角度下,大壁虎Vevl神经元很可能通过短暂的相关性活动与其他神经元进行相互协调或者相互之间的兴奋性和抑制性输入达到动态平衡来实现姿态的平衡控制。此外,本文还探索了平衡感知实验平台转动的电动控制。采用伺服电机和同步齿形带系统驱动转台旋转,运用Arduino mega2560编写了驱动转台旋转的程序,初步实现了转台旋转的自动控制。