【摘 要】
:
该文运用了排队理论对视频会议中的声音数据包进行分析,对于单人发言的情况,该文建立了数学模型,并把其归于N策略的休假排队模型.通过模型,得出了在不同服务率时,队长与预取
论文部分内容阅读
该文运用了排队理论对视频会议中的声音数据包进行分析,对于单人发言的情况,该文建立了数学模型,并把其归于N策略的休假排队模型.通过模型,得出了在不同服务率时,队长与预取值的关系,从而使语音连续的问题得以解决.对于多人的情况,该文建立了三个数学模型,利用排队模型、通过大量的试验及曲线拟合,多个模型之间的比较找出了会议规模、预取数据包的大小与缓冲队列长度之间的关系,使视频会议中的语音数据包的混合问题得以解决.
其他文献
该文首先利用Moser扭转定理证明了一类Duffing方程x+g(x)=e(t)的Lagrange稳定性,其中e(t)以1为周期,g:R→R具有下列性质:当x≥d时,g(x)是超线性的;当x≤-d时,g(x)是次线性的,
论文首先引入和介绍了李双代数胚和李双代数胚上的Dirac结构的相关概念念,并给出了泊松流形上的切李双代数胚.在第二节,我们利用Nijenhuis张量使泊松张量发生形变,在满足相容
该文分为两部分.一方面,在各种各样的物理和工程问题中,往往出现解的性质相对恶劣,方程在求解区域的局部变化非常剧烈,或者是求解区域整体相对较大,却又要对其中小部分上解的
首先,我们的主要工作是研究它的正周期解.我们从依赖于时间的问题入手,选取周期问题的上下解作为初始条件,然后利用这样得到的两个问题的解分别构造迭代序列,通过研究序列的
该文主要对某些非正则半群上的群的半格同余和最小群同余进行了构造.全文共分为三章.第一章主要对GV-逆半群的γ-半素同余进行了构造和描述.该文的第二章刻划了π-正则半群上