HfO2基MIS电容器辐射损伤效应研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:wanglyyou66
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于HfO2材料具有较高的介电常数、较低的泄漏电流,以及与Si材料较好的热匹配性,成为电子器件理想的栅氧介质材料,被广泛应用于航天电子元器件中。电子元器件在轨服役过程中,对空间辐照环境异常敏感,影响其在轨使用可靠性和寿命。迄今,有关HfO2栅介质材料辐射损伤机制尚不清楚。因此,开展HfO2栅介质材料辐射损伤效应研究具有重要的工程实际意义和学术价值。本文以不同厚度(10 nm与30 nm)HfO2基MIS电容器为研究对象,基于不同能量带电粒子及不同剂量率的60Co源辐照试验,采用平带和中带电压法、深能级瞬态谱及透射电镜等表征技术,并结合模拟仿真技术,研究了辐射诱导微观缺陷与宏观性能退化的内在联系。研究结果表明,带电粒子辐照导致电容器C-V曲线负向漂移以及泄漏电流增加,VO3~0氧空位缺陷导致150 ke V低能电子辐照后C-V曲线出现双向漂移现象。电子和低能质子辐照时HfO2氧化层遂穿机制分别为电场协助隧穿(FN)和直接遂穿(DT)。在150 ke V低能电子与质子辐照条件下,氧化层越厚越易产生氧化物俘获电荷,越薄越易产生界面陷阱电荷,1 Me V高能电子反之。150 ke V质子辐照在HfO2氧化层产生位移损伤VO3-1氧空位,1 Me V电子辐照导致电容器介电常数变大。通过对比电离和位移损伤效应可知,无论是等电离吸收剂量还是位移吸收剂量下,150 ke V电子对HfO2基MIS电容器电性能退化以及陷阱电荷密度影响最大,1 Me V次之,150 ke V质子最小。三种辐照源都不存在等效关系。高、低剂量率γ射线辐照导致C-V曲线都沿电压轴负向的漂移,氧化层越薄泄漏电流密度变化越敏感,HfO2氧化层隧穿机制为(FN)电场协助隧穿。γ射线辐照射诱导陷阱电荷产生与电容器的本征缺陷相关,导致氧化层越厚越易产生界面陷阱电荷。在低剂量率增强效应下,与100 rad(Si)/s高剂量率相比,在27 mrad(Si)/s的低剂量率辐照条件下,氧化物俘获正电荷密度升高1.2倍,界面态电荷密度升高7.7倍。通过电离损伤对比,发现辐照相同电离吸收剂量下,150 ke V电子对HfO2基MIS电容器电性能退化以及陷阱电荷密度影响远大于高、低剂量率γ射线,且两种辐照源不存在等效关系。
其他文献
APFC技术在抑制网侧谐波污染、提升能量转换效率等方面起着重要的作用,成为当下的研究热点。单级桥式PFC变换器结合了APFC技术与桥式DC-DC拓扑的优势,具有开关器件少、功率密度高、桥臂开关管不存在直通问题、效率高等优点,在中大功率场合有良好的应用前景。但该变换器在工程应用中,存在变压器偏磁问题、输出电压低频纹波大等问题,极大影响了变换器的性能。因此,有必要对上述问题进行深入的分析并提出相应的解
多能互补型微电网作为一种新兴的多种能源、多种负荷的能源系统,可弥补可再生能源输出不稳定、间歇性强的劣势,提高微电网的稳定性和可靠性。由于多能互补型微电网中供能设备、储能设备、负荷种类众多,对微电网进行规划配置是稳定运行的前提。同时,微电网内供能关系复杂、能量之间耦合,对各设备单元的功率进行优化是经济运行的必要条件。首先,本文提出多能互补型微电网的结构,分析微电网系统整体的工作模式和各设备单元的工作
现代电气装备中电缆是必不可少的元件,承担了电能供给和信号的传输功能,是影响设备可靠运行的关键因素。研究表明电缆硬故障往往是由软故障发展而来的,如能在电缆发生短路或断路等硬故障前检出软故障,可有效提高装备运行可靠性。在实际使用中,电缆多呈网络结构,目前尚无成熟手段能够实现电缆网络软故障的检测与定位。因此,本文提出基于时间反演—多信号分类(Time ReversalMultiple Signal Cl
电力系统暂态稳定分析是安全稳定控制的重要依据,对提高电网运行可靠性具有重大意义。我国电网的大规模互联与新能源装机容量的不断提高,给电力系统的安全稳定运行带来严峻挑战。这就要求操作人员在故障发生后能及时识别系统的稳定状态,确定系统失稳的严重程度,准确快速地切除故障。因此,有必要对电力系统暂态稳定的快速计算方法进行研究,帮助操作人员迅速掌握故障后系统的稳定信息,以便于进一步采取措施清除故障。为此,本文
综合能源系统含电、热、冷、气等多种异质能源网络,多能流通过耦合设备相互影响,有利于促进能源的互补替代和梯级利用,对提高综合能效具有关键意义。传统能流分析中,电、热、气等网络的建模方法和分析思路各不相同,难以从本质上分析异质能源网络的耦合。对此,本文基于统一能路理论,提出了含压缩机的气网等效模型,推导提出热网水-热联合模型,在此基础上研究了综合能源系统多能流潮流计算及最优潮流问题。首先,建立综合能源
近年来,直流电网正逐渐向多端化、网络化、电力电子化发展,呈现出动态行为复杂、暂态响应快的特征,迫切需要灵活、精确、快速的仿真测试技术。其中,功率硬件在环仿真既能够模拟较大规模、可灵活修改的电网环境,也能够准确复现电力电子设备高速动态过程,正逐步成为直流电网基础理论研究与关键电力电子装置开发测试的有效手段。在功率硬件在环仿真中,仿真模型的离散化、接口硬件的非理想因素均会给系统引入额外的延时,影响功率
随着绿色智慧矿山概念的不断发展,对处于高瓦斯粉尘的矿井下用电设备的安全用电性提出了更高的要求。目前矿井下用电设备的供能方式主要有三类,即通过受电弓架线接触性供电、柴油机供电和蓄电池供电。单轨吊车以其具有牵引能力强、工作效率高的优势已经被广泛应用于国内外的煤矿开采运输系统中。对于单轨吊车而言,采用接触性供电的方式会由于电线的接触产生火花,甚至爆炸;采用柴油机供电易污染环境,且柴油不可再生,非绿色环保
目前适用于电网的工频整流器已经被广泛的应用于各种工业生产设备和电网接口,但是在功率较大的场合下,由于功率半导体器件的非线性特性,整流过程会有大量的电流谐波进入电网,导致电网被污染。采用多脉波整流技术可以有效抑制电流谐波,其中无源谐波抑制技术具有结构简单易于实现的优点,但是无法从原理上消除电流谐波,而有源谐波抑制技术虽然谐波抑制效果较好,但是其有源环节容量较大,造成的损耗大且对输出电压的纹波没有改善
随着科技的发展,能源和环境的问题越来越被人们所重视,大力发展风能和太阳能等可再生能源已经成为全球共识。如今,许多国家都在致力于全球能源互联网的建设,而能源路由器作为能源互联网中的关键节点设备更是至关重要。储能系统做为能源路由器实现能量调配的关键,起到对能量削峰填谷等作用,因此研究混合储能系统的拓扑结构,控制策略,以及效率优化策略等关键技术具有重要意义。本文以家庭能源路由器为背景,对应用于混合储能系
直流输电线路发展的同时肩负着电网安全可靠运行的责任,输电系统一旦发生故障将给居民生活带来不同程度的经济和安全问题,因此在故障发生后需要快速精准的故障定位来减少损失。为了提高故障定位准确性和供电可靠性,本课题以高压直流输电系统为背景,设计了线路多监测点与高精度波头提取算法相结合的故障定位方案,并针对各种雷击故障类型提出定位方法并进行仿真验证,均能准确实现故障定位。具体研究内容如下:首先,在搭建的高压