论文部分内容阅读
在筒仓卸料过程中,不同的卸料流态变化,仓壁压力也会表现出不同的变化规律。为此,本文采用物理模型试验和离散元数值模拟结合的方法,对不同卸料流态下的仓壁压力分布规律进行研究。关于动态仓壁压力增大的影响因素有很多,本文通过建立不同高径比的离散元模型,以期从细观角度研究不同贮料高度下仓壁压力峰值作用点位置的发生机理,具体研究内容如下:(1)通过物理模型试验,自主设计定制半圆形有机玻璃试验筒仓,选用物理力学参数与粮食颗粒相近的煅烧陶球为散体物料,通过压力传感器测取贮、卸料工况下的仓壁压力数值,采用不同的装料方式,以保证不同的物料密实度,观察不同的卸料流态变化,并对不同卸料流态下的仓壁压力进行波动性和超压分析。(2)通过离散元程序建立与(1)中模型试验具有相同高径比的筒仓模型,采用中心装料方式(即松散装料),观察不同的卸料流态,并与模型试验结果进行对比。将模拟结果中的卸料流态、颗粒速度及力链网络分布进行联合分析,探求贮、卸料工况下仓壁压力变化的细观机理。(3)使用PFC程序建立数值模拟筒仓模型,保持筒仓直径为不变量D,改变贮料堆积高度H分别为2D、2.5D和3D,综合考虑仓壁卸料压力峰值、颗粒速度分布和配位数差值演化规律,通过仓壁压力峰值分布对初始状态的敏感性,研究贮料堆积高度对筒仓结构受力的影响。以相对颗粒速度vri=0.001为临界值绘制临界曲线,将压力峰值出现时的物料区域划分为流动和静止区域,对比不同物料区域的配位数差值,从剪胀效应的角度研究动态仓壁压力峰值作用点位置的发生机理。(4)通过(1)中物理模型试验,得出如下结论:贮料初始密实度较大时,卸料流态表现为管状流;贮料初始密实度较小时,卸料流态表现为整体流→整体流与漏斗流共存→漏斗流的不断转化,且仓壁压力在卸料瞬间具有最为明显的突变现象。由于卸料工况下的动态成拱机制,仓壁压力会发生不同程度的波动性变化,且不同的卸料流态区域仓壁压力波动性变化不同,其中整体流区域波动性最大。同时,整体流区域波动性最大点具有最大的超压系数1.85。将(2)中数值模拟结果与模型试验结果进行对比,发现两者卸料流态变化一致,且当贮料表面颗粒流速与中心流道颗粒流速一致时,可作为整体流向漏斗流过渡完成的标志。通过对(3)中不同贮料高度的PFC模型模拟结果对比分析,发现贮料工况下的颗粒排列分布影响卸料压力峰值分布,且筒仓下半部分的仓壁压力峰值分布对初始状态具有更高的敏感性。在卸料工况下,随着贮料堆积高度的增加,仓壁压力峰值作用点的位置深度增加,且均在距仓底0.3m左右高度。峰值压力作用点出现在距离仓底0.3m左右高度的原因是其位于物料流动区域与静止区域交界处,该位置附近剪胀效应最为明显。