【摘 要】
:
我国高速铁路纵横交错,贯通全国各主要城市,无砟轨道技术随之高速发展。无砟轨道解除了有砟轨道对列车速度的限制,以其稳定性高、耐久性强的优点被广泛应用。但随着运营时间的累积,无砟轨道板温度效应大的缺点逐渐暴露出来,特别是在一些施工质量差的路线上,无砟轨道的维护工作量逐步增大。无砟轨道板温度测量及安全隐患检测对其安全运营及特性研究愈加关键,其温度及安全隐患检测技术具有十分重要的科学价值和实用意义。红外测
论文部分内容阅读
我国高速铁路纵横交错,贯通全国各主要城市,无砟轨道技术随之高速发展。无砟轨道解除了有砟轨道对列车速度的限制,以其稳定性高、耐久性强的优点被广泛应用。但随着运营时间的累积,无砟轨道板温度效应大的缺点逐渐暴露出来,特别是在一些施工质量差的路线上,无砟轨道的维护工作量逐步增大。无砟轨道板温度测量及安全隐患检测对其安全运营及特性研究愈加关键,其温度及安全隐患检测技术具有十分重要的科学价值和实用意义。红外测温技术是一种常用的非接触测温方法,该技术通过目标红外波段的辐射能量进行检测,具有非接触、非侵入、响应速度快、被动测量等优点。本文基于红外测温技术对无砟轨道板温度及裂缝进行检测,旨在:研制适用于高寒高速综合检测列车的高寒地区无砟轨道板红外测温系统,解决无砟轨道板外场大范围温度检测仪器缺失的问题;研究外场无砟轨道板红外测温技术,解决所研制红外测温系统标定环境与测量环境温度不一致影响测量精度的问题;研究基于单像元红外探测器的无砟轨道板裂缝检测技术,实现温度及裂缝双参数检测。本文的主要研究内容如下:(1)针对国内无砟轨道板外场大范围温度测量设备缺失问题,研制了一种悬挂于综合检测列车底部的高寒地区无砟轨道板红外测温系统,填补了高寒高速综合检测列车轨道板表面温度测量功能的缺失。测温系统可以在-30℃~30℃环境下工作,测温范围为-40℃~60℃,响应速度优于2.5ms。根据使用需求,红外测温系统采用分立式结构。系统上位机负责数据处理工作,包含标定及测量两项功能。系统下位机负责辐射信息采集及光电转换,长时间在室外工作,环境严苛,设计有温控系统及冷启动功能,通过连接结构悬挂于检测列车底部。研制过程中对所选探测器信噪比进行计算以保证所选探测器能够完成-40℃目标测量任务,对所设计连接结构进行承载能力计算以确保仪器使用安全。测温系统通过面源黑体进行标定,所研制面源黑体温控范围为-40℃~60℃,通过恒温槽构建第二恒温场的方式实现。(2)为能够基于所研制红外测温系统实现高寒地区无砟轨道板外场高精度温度测量,对外场无砟轨道板红外测温技术进行研究。研究内容主要包括红外测温模型的建立、测温精度影响因素的研究及低温黑体波段辐射响应计算的研究。研究中重点解决标定环境与测量环境不一致影响测量精度的问题,针对此问题提出了一种外场无砟轨道板高精度测温方法。该方法通过两不同环境温度下的标定函数分离标定过程中混合在一起的靶标自身辐射与反射的环境辐射,构建出目标温度与环境温度相等的等效黑体辐射函数,该函数符合外场无砟轨道板实际测量场景,可用于提高外场无砟轨道板温度测量精度。对所提外场无砟轨道板红外测温方法进行了实验验证,证明了该方法的可行性。(3)针对无砟轨道板裂缝检测问题,开展了基于单像元红外探测器的无砟轨道板裂缝检测技术研究工作。该技术通过温度信息进行裂缝检测,可避免光线及阴影干扰,仅需采集电压序列并进行比较,响应速度快,便于进行高速车载检测。该方法建立在裂缝无法充满红外探测器视场的情况下,研究中构建了无砟轨道板裂缝检测的检测场景,基于所构建的检测场景建立了单像元红外探测器输出信号与裂缝宽度之间的函数关系,据此函数关系可以计算探测器视场内裂缝宽度。根据所建立函数关系进行仿真研究,观察存在裂缝时输出信号变化趋势,裂缝宽度与输出电压变化量之间的关系及视场大小与可检测裂缝宽度之间的关系。最后设计模拟毫米级裂缝检测过程的实验,验证了检测方法的可行性。(4)在实验室内对所研制的高寒地区无砟轨道板红外测温系统进行响应速度验证实验、环境温度适应性验证实验及不确定度分析。使用红外测温系统配合线速度超过360km/h的转盘进行实验,验证了系统响应速度要求。使用红外测温系统配合高低温实验箱进行实验,验证了系统环境温度适应性。使用标定好的红外测温系统进行重复测量实验,根据测量结果完成了不确定度分析。
其他文献
近些年来,临近空间高超声速飞行器技术不断发展,对临近空间攻防对抗技术的需求越来越迫切。从防御方的角度出发,本文研究了反临近空间高超声速目标拦截导弹的制导律和制导滤波器设计问题;从进攻方的角度出发,本文又研究了临近空间拦截导弹的制导律辨识和飞行轨迹预报问题。在低空环境下,拦截导弹的自动驾驶仪的动态特性通常比较复杂,为二阶系统,并且有两个零点。对于尾控型导弹,还会有一个右半平面内的零点。这会降低导弹制
热电材料作为一种能够实现热能与电能之间直接转换的能源材料,在废热发电及热电制冷领域具有广阔的应用前景。在中温区间,Co Sb3基方钴矿因具有较高的热电性能和结构稳定性,被认为是最具商业化应用的热电材料之一。其中,Yb0.3Co4Sb12合金是最具代表性的n型单填充方钴矿,但较高的热导率仍有降低的空间。因此,在不损伤电性能的同时显著降低合金的热导率是提高热电性能的最有效途径之一。本文提出采用第二相和
畜禽动物在生长过程中,为预防及治疗疾病并催促生长会长期使用大量抗生素和微量重金属,导致畜禽动物的肠道微生物承受了抗生素与重金属的共选择性压力,从而使畜禽动物排出含有大量耐药菌、抗生素抗性基因(ARG,antibiotic resistance gene)和重金属抗性基因HMRG(heavy metal resistance gene)的粪便,如未经处理而直接返田,则易导致耐药菌所携带的抗性基因通过
面对能源危机和环境污染的巨大压力,开发新型的清洁能源和寻求有效的节能减排方法成为了新世纪的科学研究热点。氨是最重要的化工原料之一,同时也是含氢量极高的能量载体。目前的工业合成氨方法操作复杂、能耗大、生产集中,需要进一步改进或者寻求新型的替代方法。光催化技术能够以光能为驱动力,利用空气中的N2和水为原料完成常温固氮,整体反应过程绿色、可持续、无污染,有望成为新一代合成氨催化应用技术。然而,光催化的产
辽宁某钢厂焦化废水处理工艺的膜生物反应器(MBR)出水COD较高且不稳定,严重影响了后续的废水深度处理效果,增加了企业的环保设施改造和运行成本,主要是难降解有机物引发的含酚废水处理效能降低和膜污染加剧。近年来,电场膜生物反应器(Electric field attached MBR,EMBR)在减缓膜污染和提升废水处理效率方面显示出潜在优势,另外生物炭因具有吸附解吸、催化氧化、电子交换能力等,在废
随机偏微分方程是一类包含随机过程或随机场的偏微分方程。将偏微分方程和随机性联系起来的思想可追溯到20世纪50年代。分数阶随机偏微分方程是近年来一个新兴的研究领域。分数阶微积分固有的多尺度性使得其更适用于刻画反常扩散、记忆效应和分形等自然现象。但由于分数阶微积分的非局部性和强奇异性,导致目前关于分数阶随机偏微分方程的相关结论还比较少。分数阶Brown运动由Kolmogorov于1940年左右提出,目
气化是一种清洁高效的固体燃料转化技术,其利用气化剂将固体燃料转化为气体燃料,可以脱除固体燃料中大部分的污染物。理解气化剂和金属催化剂与焦炭边缘的相互作用是揭示气化机理的关键。密度泛函理论可以从化学微观层面描述气化机理,从而解释气化实验中的特殊现象。本文利用密度泛函理论研究了焦炭气化反应机理,计算了非催化气化过程中H2O和CO2与焦炭的反应路径,在非催化气化路径的基础上对比典型金属催化剂Na、Fe、
《中国制造2025》指出,我国要大力培育和发展超精密加工、航空航天以及机器人等高端装备制造业,以推进我国由制造业大国向制造业强国转变。随着上述领域的快速发展,对驱动与定位系统在运动行程、运行速度以及动作精度等方面均提出了苛刻的需求,甚至部分需求已经超出了当前以电磁电机为主要实现方式的精密驱动装置所能达到的极限。由此可见,开展高性能精密驱动技术研究显得尤为迫切和需要。压电驱动器分为谐振型和非谐振型两
低碳烷烃是页岩气的主要成分,资源丰富且廉价。但烷烃含键能高、极性低的C-C键和C-H键,并无活化基团,因此化学性质稳定,这是阻碍其向高附加值产品高效转化的主要因素。金属、非金属改性的ZSM-5分子筛是一种可实现电子转移和质子转移的双功能催化剂,可提高烷烃在合成化学中的利用率。本论文着重研究改性ZSM-5分子筛的制备及其在六碳环烃环己烷和三碳链烃丙烷这两类典型烷烃化学键活化反应中的催化作用,即分别对