水溶性聚酰胺的合成及其自组装行为研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:t920215
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
大分子自组装是构筑功能化微纳米材料的重要手段之一,基于大分子自组装制备的材料已经被证实在药物载体、微纳马达、光电材料、微电子器材等方面具有广泛的应用前景。目前大分子自组装的研究对象集中在线性嵌段共聚物和支化嵌段共聚物上。事实上,广泛的氢键作用、分子内易引入功能化单体、结构单元交替链接和超强的结晶性等特征使得聚酰胺有望成为一种非常有潜力的自组装基元。然而迄今为止,关于聚酰胺自组装的研究报道还非常少。基于此,本文合成了一系列水溶性聚酰胺,通过直接水合法制备了它们的组装体,并研究了聚酰胺组装体的独特性能和自组装机理。首先以戊二酸和不同数均分子量的聚醚胺为原料合成了两亲性聚酰胺PAGAPs。利用FT-IR、1H-NMR、DSC和TGA证实了两亲性聚酰胺的成功合成。采用直接水合法制备了PAGAPs两亲性聚酰胺的组装体,TEM和DLS的结果表明,PAGAP.230和PAGAP.400可以在7天内分别自组装成纳米囊泡和纳米管,而PAGAP.2000可以在水中迅速自组装成粒径为1.25μm的巨型复合胶束。冷冻电镜、粒度测试和微量热DSC的结果表明巨型复合胶束是由初始胶束在疏水作用和氢键作用驱动下二次聚集而来。PAGAP.2000巨型复合胶束具有特殊的酸敏性,概括为随着酸浓度的增加,粒径先减小后增大,然后再减小至完全解体。其酸敏性的本质是由不同浓度氢离子对聚酰胺间氢键以及PAGAP.2000分子亲水性的改变造成的。为了进一步探究聚酰胺的自组装行为,以间苯二甲酸-5-磺酸钠和聚醚胺D400为原料合成了强水溶性聚酰胺PASIP.400,通过FT-IR、1H-NMR、DSC和TGA证实了强水溶酰胺的成功合成。OM、TEM、SEM和AFM的结果证明PASIP.400可以在水相中自组装为长度达毫米级,直径达2.65μm的巨型微米管,该微米管的壁厚随水化时间的延长而增加,在14周后可超过250nm。PASIP.400巨型微米管可以在极性溶剂和强酸以及在湿热(121oC,1.2atm,1h)和干热(200oC,30min)的条件下保持形貌稳定,展现出优异的耐化学溶剂和热稳定性。广角XRD和zeta电位测试表明聚酰胺微米管是多层膜紧密堆积形成的结构,DSC、红外和TGA的结果证明多重的氢键作用是PASIP.400自组装的驱动力,同时也是其保持超高稳定性的原因,水分子参与到了PASIP.400的自组装过程中。随后,为了更深入研究聚酰胺的自组装特征,以间苯二甲酸-5-磺酸钠、α,ω-二羧基聚乙二醇、间苯二甲胺、1,12-十二烷二胺和聚醚胺D2000为原料,两两组合制备了结构不同的水溶性聚酰胺,并利用微观显微技术跟踪观察了它们在大尺度时间范围内的自组装行为,发现了含有醚键聚酰胺具有一个共同的组装体转变行为,即微米管-含细颈微米管-珍珠项链-囊泡的转变过程。本文以水溶性聚酰胺为前驱体,通过逐步改变聚酰胺的分子结构特征,制备了具有独特性能的巨型胶束、微米管和厚壁囊泡组装体。为后续聚合物自组装研究领域的学者们提供了一个新的思路,具有很大的借鉴意义。
其他文献
作为先进的高温防护涂层,热障涂层技术对高性能航空发动机和燃气轮机的重要性不言而喻。纳米结构和稀土锆酸盐热障涂层是未来高性能超高温热障涂层材料的重要发展方向。本文以质量分数为8%Y2O3稳定氧化锆(8YSZ)和La2(Zr0.75Ce0.25)2O7(LCZ)纳米粉末作为原料,通过纳米粉体造粒调控技术成功制备出两种等离子喷涂用纳米结构喂料,设计并制备出纳米结构LCZ/8YSZ双陶瓷热障涂层,并与传统
为了满足人类视觉体验和传递再现真实的色彩信息,追求高性能和多功能的色彩显示成为了显示领域的目标之一。受到自然界中一些动植物体表微纳结构与光相互作用所呈现鲜艳颜色的启发,科学家们开启了对微纳结构显示器件的研究。依靠近年来微纳加工技术突飞猛进的发展,利用微纳结构组成的二维超构表面(Metasurfaces)对光振幅和相位的调控,结构色和全息显示器件成为了纳米光子学一个重要研究领域。借助于硅,二氧化钛等
与固定边界的抛物型系统相比,自由边界问题更具有实际意义,这里自由边界代表物种的扩张前沿.本文首先研究几类种群模型的自由边界问题.主要关心其动力学性质:整体解的存在唯一性,正则性估计,长时间行为,蔓延和灭绝的判别准则,当蔓延发生时物种的渐近蔓延速度以及自由边界的渐近速度等.在本文的最后,研究带有季节演替现象的反应扩散竞争模型,主要探讨行波解的存在性以及种群的传播性质,并与对应的自由边界问题做对比.此
绿道作为融合健康、生态与景观的连续性开敞空间,已成为我国城乡绿色空间生态与景观结合发展重要规划手段,同时也是国土空间规划与全域旅游发展推动的有效载体之一,以休闲游憩空间建设引领区域空间绿色化发展,提供解决快速城镇化发展中的环境问题及社会矛盾途径。但目前城乡绿道建设出现发展不均衡、技术不成熟等问题,特别是环境资源较复杂的市县域地区各类资源协同机制薄弱,对区域绿道空间可持续发展形成限制。论文立足于全域
紫外激光光源在微加工、紫外医疗、光刻等领域具有重要的应用,固体激光器是当前紫外激光光源非常重要的组成部分。而紫外非线性光学晶体材料作为固体激光器的核心器件,受到广泛的关注和研究。磷酸盐因其丰富的晶体结构和优异的光学性能,是探索紫外非线性光学晶体材料的优选体系。然而紫外磷酸盐存在倍频效应和双折射率普遍较小的问题,因此为了增强其倍频效应和双折射率,本文将不同的原子与碱金属磷酸盐复合,合成了多种新型紫外
近年来,随着可穿戴电子产品的智能化、便携化和多功能化发展,对柔性能源存储设备提出了新的要求与挑战。柔性超级电容器因其装配简单,操作安全,环境友好等优点,引起了研究人员的广泛关注。如何通过有效的结构设计制备高界面稳定性和良好兼容性的柔性电极和凝胶电解质来满足柔性器件在不同形变条件下稳定的能量输出是目前亟待解决的问题。相比于其他的柔性电极,织物基电极因其独特的物理化学性质,可以最大程度的释放连续形变过
在我国极端环境工程需求日益增长的情况下,以及“一带一路”等国家战略中许多重要工程将会跨越若干个冬季施工期的背景下,保障混凝土工程在寒冷环境下安全可靠、提高冬期施工的关键技术及理论基础愈加重要。水泥的早期水化硬化是保证冬期施工混凝土性能及质量的关键影响因素,如何在负温下促进水泥快速水化、保证强度持续发展、并避免冻害发生是需要攻克的难点。通常会采取保温蓄热养护方法,然而这类方法不仅会消耗大量的人力物力
由于具有绿色、环保和节省资源等优势,自修复智能材料受到了研究者们的广泛关注。随着研究的深入,人们发现一些因素制约着自修复材料的发展,如较好自修复能力与强机械性能难以同时实现以及自修复材料制备效率低等难题。目前,人工材料的自修复能力还难与自然界生物体相媲美,而复杂的制备过程也进一步阻碍了自修复材料的实际应用。本论文利用模拟人体表皮结构的仿生设计,实现了自修复性能与高模量/高硬度的有效结合,完成了类表