肿瘤酸度响应的高分子纳米载体增强胞内/外靶标药物递送效率的研究

来源 :华南理工大学 | 被引量 : 0次 | 上传用户:kinglovechina
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于肿瘤复杂的生理环境和体内多重生理屏障,纳米药物需要经历体内循环、肿瘤富集渗透、细胞摄取和药物释放等过程,导致其递送效率不佳。如何提高药物的递送效率是药物载体领域的重要科学问题,也是提高纳米药物抗肿瘤疗效的关键所在。针对这一难题,本论文针对所递送药物的靶点不同,结合肿瘤酸度响应的高分子载体材料的设计与合成,构建纳米载体提高抗肿瘤药物递送至靶标的效率。本论文主要研究内容包括如下两部分:1.细胞核是许多抗肿瘤药物的作用靶点,肿瘤复杂的生理环境和体内多重生理屏障导致细胞核靶向药物的递送效率不佳。针对细胞核靶点药物的递送,我们设计合成了肿瘤酸度/活性氧双重响应的纳米药物载体DTRCD,用于递送靶标位于细胞核的抗肿瘤药物。我们合成了活性氧敏感的超支化聚磷酸酯材料,在其末端修饰了肿瘤酸度激活的穿膜肽TAT,并利用该材料包载DOX和Ce6得到DTRCD。DTRCD经体内循环后到达肿瘤部位,在肿瘤弱酸环境下可重新激活TAT,增强肿瘤细胞的摄取;进入胞质后,TRCD表面的TAT进一步结合胞质内输入蛋白α/β(Importinα/β)靶向细胞核膜上的核定位信号,在细胞核周围区域富集。随后,在660 nm近红外光的照射下,核周围区域的TRCD能产生活性氧,一方面可直接打开核膜,实现颗粒或药物的直接进核;另一方面产生的ROS可降解TRCD,触发DOX的快速释放,实现级联放大的抗肿瘤效果。这一策略为提高肿瘤细胞核靶向药物的递送效率提供了新的递送策略。2.与胞内靶点药物不同,胞外靶点药物需要在胞外释放才能有效到达其靶标,发挥抗肿瘤作用,但目前该类递送载体研究较少。为此,我们构建了一种肿瘤酸度响应的纳米递药系统,肿瘤酸度可触发颗粒之间的生物正交反应,实现纳米载体的肿瘤原位组装,用于递送胞外靶点药物,提高药物递送效率。我们分别合成了半胱氨酸残基(Cys)或2-氰基-6-氨基苯并噻唑(CBT)修饰的Cys-PEG-b-PLA和CBT-PEG-b-PLA。再利用2,3-二甲基马来酸酐屏蔽Cys-PEG-b-PLA末端的Cys得到DA-Cys-PEG-b-PLA。利用DA-Cys-PEG-b-PLA和CBT-PEG-b-PLA分别制备纳米颗粒DA-CysNP和CBTNP,经系统给药后到达肿瘤组织,DA-CysNP在肿瘤酸度环境下可脱去DA重新生成Cys,与表面修饰CBT的CBTNP发生生物正交反应,实现在肿瘤部位的原位组装,能有效延长纳米颗粒在肿瘤组织的滞留时间。利用该纳米递药系统递送胞外靶点药物巴马司他(BB-94)或DOX、NLG919和BLZ945等小分子药物能有效抑制肿瘤的转移和生长。这一策略为递送细胞外/膜上靶点的抗肿瘤药物提供了新的载体设计思路。
其他文献
近年来,金属氧化物纳米颗粒在电子、光学、催化与储能等领域已得到广泛的应用,并且受到了越来越多科研工作者的关注,各种制备金属氧化物纳米颗粒的方法也应运而生。其中,溶胶凝胶法作为一种低温合成法成为研究热点。但使用该方法制备纳米颗粒时,一般会用到有一定毒性的前驱体(酯类化合物或金属醇盐)或有机溶剂。从环保和商业角度而言,选用环境友好及价廉的前驱体和溶剂,以实现快速批量化制备金属氧化物纳米颗粒很有必要。海
随着化石资源的日益枯竭以及环境问题的不断恶化,开发可再生的清洁能源成为一种必然的趋势。生物质资源由于其来源丰富、可再生且能够提供可持续碳源等特点,被认为是化石资源的理想替代能源。糖酸作为木质纤维生物质重要组成单元单糖选择性氧化的重要产物,在食品、化工、医药以及建筑等领域具有广泛的应用。因此,设计和开发绿色高效的制备糖酸的催化体系对缓解能源短缺和环境恶化等问题具有重要的意义。本论文研究了一系列碳基催
海洋对人类的作用是极其重要的,人类对海洋资源的开发越来越重视。对海洋进行探索和开发离不开海洋信息传输技术的支持,其中水声传感网络是目前观测海洋并收集海洋信息最重要的技术手段之一。但是,水声传感网络的设计和分析面临着巨大的挑战:水声信道是最恶劣的无线信道之一(多径效应严重、多普勒效应严重、传播时延长、可用带宽受限、误比特率高和噪声大);节点部署的成本高;网络结构具有高动态性。由于无线电信道和水声信道
老龄化社会的到来及空巢老人和留守儿童的持续增加,使得社交机器人在自闭症儿童、孤寡老人和残障人士等特殊群体中有重大应用潜力。社交机器人可以帮助自闭症儿童提高社交能力;帮助生活不便的老人独立、安全地应对日常生活,提高他们的生活质量。然而,现有的人-社交机器人的交互模式大都依赖于单一的传感系统,存在人机交互形式单一、感知能力不佳、智能化程度低等问题,导致其应用受限。因此,研究新型的人-社交机器人交互方法
高分子材料由于其优异的性能被应用到日常生活的各个方面,但是高分子材料阻燃性能薄弱,易燃烧,存在安全隐患。因此,对高分子材料进行改性,以期提高其阻燃性能的研究就显得十分重要。阻燃剂是能提升高分子材料阻燃性能的一类助剂。卤系阻燃剂是常用的一类阻燃剂,但其不仅易迁移且易在生物体内富集,而且其在燃烧时还会产生有毒物质。因此,研究和开发无卤、无毒或低毒和高效的阻燃剂是当今阻燃领域的发展方向。目前,有机磷-氮
心力衰竭是一个重要的全球性健康问题,伴有较高的患病率及死亡率,给社会及家庭带来了极其沉重的经济负担。心衰可由多种疾病导致,其中最主要的两大病因为冠状动脉粥样硬化性心脏病(缺血性心肌病,ICM)及扩张型心肌病(DCM)。心衰进展过程中所涉及的分子机制复杂,是目前研究的热点之一。人体生物样本是研究人类疾病分子机制的重要载体,但是作为生命支持器官,其组织获取极为困难。目前人体心脏组织生物样本绝大多数获自
尼龙6(PA6)是热塑性工程塑料中最为重要的品种之一,具有优异的综合性能,广泛使用于许多领域。然而,较低的缺口冲击强度和本质可燃性限制了PA6的应用。作为最通用的热固性树脂之一,环氧树脂同样也有韧性差和易燃的缺点。因此,为拓宽尼龙6与环氧树脂的应用领域,需要对它们进行增韧、阻燃改性。有机硅环氧化合物可以与尼龙6发生扩链反应,提高尼龙6的力学性能,同时将阻燃元素硅引入到尼龙6的分子链上,有望在改善尼
作为增韧聚乳酸(PLA)最经济便利的方法之一,橡胶的加入虽然能提高PLA的韧性,但此过程亦伴随着PLA拉伸强度和模量的大幅度下降。因此,如何在持续提高PLA韧性的同时保持较高的拉伸强度和模量,是实现PLA基材料高性能化过程中亟待解决的问题。同时,单一的高性能材料已无法满足航空、微电子和医疗等领域尖端技术的发展要求。在此背景下,各种敏感材料、形状记忆和自修复材料等智能材料应运而生。基于此,本文期望通
海洋生物在水下设施表面附着生长而逐渐形成的生物垢,称之为海洋生物污损,它对海洋运输业和海洋资源开发造成严重危害。目前,基于水解性聚丙烯酸酯的自抛光防污涂层(SPCs)是应用最广的海洋防污材料,然而其表面自更新依赖于水流冲刷,静态防污能力不佳。此外,这类聚合物主链不降解,水解后的聚合物在海洋中形成微粒,对海洋生态不利。本论文通过分子设计制备了功能性主链降解-侧基水解(双解)高分子防污材料,研究了其化
在众多的磁性材料中,非晶/纳米晶合金由于其优异的磁学性能而在科学与技术应用领域引起了越来越多的关注。不论在基础研究还是在实际应用方面,都取得了巨大的进步。在基础研究方面,从磁学理论知识的深入研究,到成分设计原则的探索,已经为非晶/纳米晶合金的实际应用奠定了良好的基础;在实际应用方面,从工艺优化到新技术的开发,使非晶/纳米晶合金的应用范围越来越广泛,已经有众多的非晶/纳米晶合金被应用于变压器、传感器