关于多边形分划的下界问题

来源 :河北师范大学 | 被引量 : 0次 | 上传用户:ag128333
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
十九世纪上半叶Lowry,Wallace,Bolyai与Gerwien同时证明了一个古老的数学命题;任意给定平面上个简单多边形,必可将其分划成有限块,重新安排,拼成另一个任意给定的等面积的简单多边形.近年来数学界广为关注的一个难题是,如何确定这种分划中的最小块数.本文主要讨论分别用两种不同的分划方法-glass-cut分划法和polygonal cut分划法把一个正m边形分划为等面积的正n边形需要的最小块数.
其他文献
设R是一个含单位元的交换环,A是一个有单位元的R-交换代数,N(A)表示代数A上所有n阶严格上三角矩阵构成的R-代数.该文的主要目的是确定了R-代数N(A)的自同构.这项工作是在Kezl
该文共分五节,第一节首先引入距离空间中等距算子的定义,然后主要介绍DOPP(英文Distance One Prsesrving Property的缩写)问题,即保1算子在什么条件下可以成为等距算子?这一
随着航天事业的高速发展,中国在航天器的控制技术上投入的精力也越来越大。而在该领域中姿态控制越来越受到人们的关注,因为对空间中在轨飞行的航天器来说,会受到各种各样的干扰
该文研究了环R× M的k-Gorenstein性质,讨论了它的同调维数.维数的研究是同调理论中的核心部分,伴随同调理论的形成,它便一直成为同调代数中研究的焦点.对于给定的结合环,人
该文主要在Hilbert空间上探讨含Riesz基框架的一般性质、稳定性,不相交性及其交错对偶的情况.受文献[11]的启发,探讨了Besselian框架的一般性质、摄动、交错对偶,得到了一系