水泥基材料早期碳化反应动力学和长期性能研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:hxffxh2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着全球经济和工业化的快速发展温室气体大量排放,导致近一百年来全球气温急剧上升,温室效应对环境造成了显著的负面影响。二氧化碳是最主要的温室气体,而水泥行业又是二氧化碳的主要工业生产源,因而降低水泥行业的碳足迹势在必行。所以,本文提出利用水泥基材料对二氧化碳气体进行捕捉固化。首先,基于分子动力学原理对水泥基材料早期碳化反应动力学进行了模拟与分析计算。揭示了Ca CO3原子尺度沉淀机理,包括无定型方解石的形成、结晶等,阐述了掺合料的组成(例如Si、Al等)对碳化动力学的影响等。研究结果发现,相对于经典力场,反应力场下模拟计算的碳酸钙聚合反应活化能,Ca-O、Ca-Ca、Ca-C的原子间距和Ca的配位数更接近于试验值。碳酸钙聚合速率及聚合度随温度的升高而升高,随Ca2+浓度的增大而增大。温度的升高以及Ca2+浓度的增大降低了碳酸钙聚合反应活化能。温度提高以及Ca2+浓度的增大使原子的局部应力变大,系统中各原子的局部应力是驱动胶凝转变的驱动力,局部应力越大,碳酸钙聚合速率会越大。溶液中Si及Al组分含量越高碳酸钙聚合反应速率越低,反应活化能越大。然后,对掺加各种矿物掺合料的碳化养护水泥基材料的基本性能(强度、干缩、电通量、气体渗透、毛细吸水)进行了研究,并以典型的掺合料煤矸石为主要研究对象,进行了XRD、FTIR、TG-DTA、29Si NMR、MIP、BSE、SEM等测试对掺加煤矸石水泥石的相组成及微观结构进行了分析。研究结果发现,碳化养护可以有效提高水泥石的早期抗压强度,可以弥补部分掺合料的加入对强度造成的损失。掺合料的存在可以促进碳化反应,进而可以使水泥石强度提高更多。煤矸石与碳化养护的耦合作用有利于提高水泥石体积稳定性,碳化养护降低了水泥石的传输性能。碳化养护可以增大水泥石中C-S-H的平均链长和聚合度,提高了水泥石平均Si/Ca比和Al/Ca比,对水泥石孔隙结构有细化作用,碳化养护后100~1000 nm孔径的孔隙明显减少,各龄期孔隙率降低。此外,对掺加煤矸石水泥石的常温/低温硫酸盐侵蚀性能(包括强度变化、质量损失、体积变形)进行了试验研究,并对其硫酸盐侵蚀后水泥石相组成及微观结构的变化进行了分析。研究结果发现,PC-CG水泥石试样在常温、低温硫酸盐侵蚀1个月后抗压强度均略有增加,而在常温、低温侵蚀6个月后抗压强度分别下降,碳化养护可以降低水泥石常温、低温硫酸盐侵蚀后强度的降低及结构的劣化。侵蚀6个月后,含0%或10%煤矸石的碳化养护试样强度仍高于相应的未碳化试样未侵蚀强度。PC-CG水泥石在常温、低温硫酸盐溶液中浸泡时间越长体积膨胀越明显,而碳化养护可以抑制这种体积膨胀。常温硫酸盐侵蚀对水泥石的破坏高于低温硫酸盐侵蚀。最后,为了更好的捕捉固化二氧化碳,本文提出了一种固碳新方法,在水泥浆体搅拌期捕捉二氧化碳,生成碳酸钙乳浊液,研究其对水泥基材料性能(强度、流动性、凝结时间)、相组成及微结构的影响,并对碳化养护以及制备碳酸钙乳浊液这两种固碳方式进行了对比分析。研究结果发现,制备纳米碳酸钙乳浊液的方法可以完全避免由于碳化养护而可能导致的不利影响。纳米碳酸钙乳浊液使水泥石各龄期强度提高,使初凝时间和终凝时间均降低。同时,加速了硅酸盐水泥早期水化,使水化放热增加,使硬化水泥浆体中Ca(OH)2的生成增多,降低了硬化水泥石的孔隙率,细化了孔隙结构。
其他文献
晚期垃圾渗滤液因其高氨氮、低可生化性以及成分复杂的水质特性,给渗滤液的生物处理造成了很大的困难。因此,开发高效且节能的晚期渗滤液生物处理工艺具有重要意义。厌氧氨氧化作为一种新型的生物脱氮技术,具有低耗、高效等特性,能够实现晚期垃圾渗滤液自养脱氮。然而,厌氧氨氧化工艺的反应底物NO2-难以稳定获取,且理论上出水中有11%的TN以NO3-的形式存在,使得出水难以达标。针对以上问题,本论文从厌氧氨氧化反
作为多金属氧酸盐化学的重要分支之一,多酸基过渡金属簇合物在催化、药学、磁学、电化学和光化学等领域有着潜在的应用前景,但是由于过渡金属的配位模式灵活,反应条件的细微变化就会导致整个体系以不同的方式进行组装,很难实现定向合成。针对上述问题,选择配位能力较强的无机磷酸和有机膦酸作为桥联配体,可以达到有效控制过渡金属簇合物结构和理化性质特别是磁性的目的。本论文主要研究多酸基锰簇,选择三缺位的Keggin型
稀土掺杂纳米晶是一类新型的借助稀土离子4f电子跃迁而产生荧光的无机纳米光学探针。稀土掺杂纳米晶具有光学稳定性强、无光漂白及光闪烁、发射波段窄、荧光寿命长等优良的光学性能,但同时存在因尺寸较大引起的长时间体内滞留而造成的较大毒性隐患、发光效率低、成像信号依赖于组织深度等问题,严重限制了其在活体成像中的应用。基于以上问题,本文从具有低声子能量的六方相纳米晶入手,探究亚10 nm稀土纳米晶内核的普适性制
量子霍尔效应最早是在强磁场下的二维电子气中观测到的,其量子霍尔电导可以表示为ne2/h,其中n为整数。这一结果开创了直接测量基本常数的新方法。随着研究的深入,人们发现量子霍尔电导中的整数n可以表示为在布里渊区中所有占据态贝里曲率的积分,揭开了拓扑物质研究的序幕。拓扑物质是具有奇特拓扑性质的物态,其拓扑属性可以用拓扑不变量来刻画。由于拓扑物质其拓扑性质不受器件构型的影响,具有极大的应用前景,因此人们
微塑料,定义为尺寸小于5mm的塑料颗粒,已成为全球重大环境问题。它可以在环境中持久存在,对生物及生态环境造成广泛的危害,甚至通过食物链进入人体,危害人体健康。纳塑料,定义为小于1μm的微塑料,其尺寸小、毒性大,可以进入人体的内循环,在细胞分子水平产生毒害,从而受到越来越多的关注,因此也被单独研究。作为新兴的海洋污染物,微塑料在海洋环境中的分布、迁移、来源、归趋和生态毒理等方面都需要深入研究,而建立
当前粗放型的水泥生产模式给我国资源消耗和环境破坏形成了高负荷。部分工业副材作为辅助胶凝材料可以实现部分替代水泥熟料,可有效减少资源消耗和碳排放,并能调控水泥熟料颗粒级配以及改善水泥基体系的性能。随着实际工程中水泥基胶凝体系的组分增多,掺量加大,而现有单掺或双掺复合体系的研究成果并不能直接应用于多元体系,导致多元体系性能发展规律并不明确,现有理论和试验研究已跟不上细掺料实际工程应用的步伐。基于以上研
光电催化作为一种新型的高级氧化技术,能够氧化分解大多数难降解有机污染物,具有操作简单、反应可控和无二次污染等特点。与传统的电化学氧化技术相比,除了需要额外光源照射驱动反应发生的光电极以外,两种技术间的组成和构型则几乎一致。然而,光电催化过程中的抗电极污染能力和低能耗等优势使得此方法在实际应用中有着更为广阔的前景。本论文在电化学氧化过程中对电极污染行为进行原位揭示,旨在洞察其形成机理和影响因素,既而
目前,世界正在努力寻找利用现代信息通信技术(如生物纳米信息网络,Io BNT)来治疗癌症、恶性肿瘤等疾病以及最近的传染性病毒(如SARS-Co V-2和covid19)的解决方案,通过靶向给药系统(TDDS)靶向所需的治疗药物。因此,许多研究者都致力于提出基于Io BNT的分子通信技术的解决方案。分子通信(MC)是计算机科学、生物学和通信科学交叉的研究领域。MC的主要思想是利用生物化学信号在自然和
作为医疗空间的重要组成部分,医院病房室内环境对住院患者的心理健康产生重要影响。随着整体医学和循证设计理念的发展,以患者为中心的病房环境设计得到了越来越多的重视。与此同时,患者在就医过程中产生的心理问题也愈发受到关注。因此,如何通过设计手段改善病房环境,促进患者的复愈,成为了本文研究的着眼点。本研究采用质性研究与量化研究相结合的方法。在质性研究方面,通过文献综述和扎根理论的研究方法实现医院病房环境复
作为神经电生理信号检测的核心部件,神经电极可以对神经电生理信号的原位采集和同步检测,实现脑神经网络活动的解读,是发现重大神经类疾病发病机制的重要途径。然而目前临床上使用的神经电极大都是基于硅基材料的刚性神经电极,该神经电极的力学性能与神经组织之间存在巨大的差异,神经电极-脑组织界面的机械性能不匹配问题在植入使用过程中极易对脑组织造成损伤,引发严重的免疫炎症反应。因此,发展长期稳定且机械性能匹配的柔