论文部分内容阅读
基于专利授权的再制造双寡头模型
【机 构】
:
汕头大学
【出 处】
:
汕头大学
【发表日期】
:
2018年期
其他文献
在逼近问题中,对于不同的目标函数,采用的逼近算子也有所不同.Kantorovich算子是Bernstein算子的一种推广.本文主要以Bernstein算子及其推广算子的函数逼近性质为基础,研究Kanto
恒化器(chemostat)模型是微生物生态学研究中的一个重要模型.它是一个简化了的湖泊模型,用来模拟海洋或湖泊、废物处理和商业生产中的发酵过程.它在遗传选择的产品生产中也有
本文讨论了有限群关于特征标的某些数量关系与群的结构之间的联系.在第2节里,我们定义μ(G)=|G|/|Irr(G)|,研究μ(G)的数量性质以及在适当条件下μ(G)对群的结构的影响,并得到以
本文研究了无界区域上的一类带记忆项的反应扩散方程的吸引子的存在性问题.通过建立一个Netmiski算子以及映射(f)使得(f)满足Lipschitz条件并对次线性项以及记忆项进行有界估
本文以一类脉冲系统微分方程为背景,考虑到实际问题中有很多函数是隐式的或者是不可微,所以介绍了Hooke-Jeeves优化算法从而避免了对函数的求导,并介绍了传统的Hooke-Jeeves优化
水库的调度关系着防洪区人民的安全问题,但是现在随着社会的发展变化,水库调度的原则部分需要进行调整。本文简单的介绍了水库调度的原则与实用性,以及现在对水库调度的要求,分析
期刊