论文部分内容阅读
从Web文档中自动抽取出与领域本体匹配的事实知识不仅可以构建基于知识的服务,而且可以为语义Web的实现提供必要的语义数据。中文语言的特点使得从中文自然语言Web文档中自动抽取知识非常困难。本文研究了面向中文自然语言Web文档的自动知识抽取和知识融合方法。主要研究内容包括:(1)分析和总结了自动知识抽取和知识融合的研究现状及存在的问题;(2)提出了系统化的领域本体定义方法,用聚集体知识概念刻画N元关系并且强调了要为本体概念指定必要的属性约束;(3)研究了面向中文自然语言Web文档的自动知识抽取方法。针对自动知识抽取的三个步骤:知识三元组元素的识别、知识三元组的构造和知识三元组的清洗,分别提出了基于本体主题的属性识别方法、基于本体属性约束的三元组元素识别方法、基于启发式规则的三元组构造方法、基于句法分析的三元组构造方法和基于本体属性约束的知识清洗方法。与已有方法相比,该知识抽取方法能够在不借助大规模的语言知识库或同义词表的情况下对中文自然语言Web文档进行自动知识抽取,能够处理文档中的N元复杂关系,适合于一般内容的中文自然语言Web文档,具有较好的可移植性;(4)提出了基于本体属性约束的知识融合方法,能够在实例化领域本体过程中识别等价实例、冗余知识和矛盾知识,保证了知识库知识的一致性;(5)分析了传统搜索引擎存在的问题,设计并实现了一个基于语义的智能搜索引擎系统CRAB,该系统能够为用户提供基于语义的知识检索并且生成直接包含查询结果的图文并茂的检索结果报告。本文在面向中文自然语言Web文档的自动知识抽取、知识融合和基于语义的智能搜索引擎等方面的研究具有一定的理论意义和应用价值,丰富了对中文自然语言Web文档的自动知识抽取问题的研究。